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Synopsis: Osteoarthritis (OA) is the most prevalent joint disorder in the elderly, and despite on-

going research, there is still no effective treatment. It has become clear in the course of research 

that imaging is essential for evaluating the synovial joint structures (including cartilage, 

meniscus, subchondral bone marrow and synovium) for diagnosis, prognosis and follow-up. 

Conventional radiography is still the most common, and radiographic JSW loss represents the 

only FDA-approved endpoint for structural disease progression in clinical trials. However, MR 

imaging-based studies have revealed some of the limitations of radiography. The ability of MR 

to image the knee as a whole organ and to directly and three-dimensionally assess cartilage 

morphology and composition plays a crucial role in understanding the natural history of the 

disease and in the search for new therapies. This article describes the roles and limitations of 

both conventional radiography and MR imaging while also considering the use of other 

modalities (e.g. ultrasound, nuclear medicine, computed tomography (CT), and CT/MR 

arthrography) in clinical practice and OA research. The emphasis throughout is on OA of the 

knee. This article is an update to the previously published article (Guermazi et al. Rheum Dis 

Clin N Am 2008; 34:645-687), and thus emphasizes research developments and literature 

evidence published since 2008, although, of course, some earlier publications are also cited. 
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Key Points: 

 

1. Although conventional radiography is still the most commonly used imaging modality for 

clinical management of osteoarthritis patients, and loss of joint space width represents the only 

FDA-approved endpoint for structural disease progression in clinical trials, MR imaging-based 

studies have revealed some of the limitations of radiography.  

2. The ability of MR to image the knee as a whole organ and to directly and three-dimensionally 

assess cartilage morphology and composition plays a crucial role in understanding the natural 

history of the disease and in the search for new therapies. 

3. MR imaging of osteoarthritis can be classified into the following approaches: semiquantitative, 

quantitative, and compositional. 

4. Ultrasound can also be useful to evaluate synovial pathology in osteoarthritis, particularly in 

the hand. 

 

Keywords: osteoarthritis; imaging; radiography; MR imaging; ultrasound; CT; PET 



 4 

Conventional radiography 

Overview 

 Radiography is the simplest and least expensive imaging technique. It can detect OA-

associated bony features including marginal osteophytes, subchondral sclerosis, and subchondral 

cysts [1]. Radiography can also determine joint space width (JSW), an indirect surrogate of 

cartilage thickness and meniscal integrity, but precise measurement of each of these articular 

structures is not possible with radiography [2]. Despite this drawback, slowing of 

radiographically detected joint space narrowing (JSN) is the only structural end point currently 

accepted by regulatory bodies in the United States (U.S. Food and Drug Administration) to prove 

efficacy of disease-modifying OA drugs in phase-III clinical trials. OA is radiographically 

defined by the presence of osteophytes [3]. Progression of JSN is the most commonly used 

criterion for the assessment of OA progression and the complete loss of JSW characterized by 

bone-on-bone contact is one of the indicators for joint replacement.  

 However, previously held beliefs that JSN and its changes are the only visible evidence 

of cartilage damage have been shown to be incorrect. Recent studies have demonstrated that 

alterations in the meniscus, such as meniscal extrusion or subluxation, also contribute to JSN [2]. 

The lack of sensitivity and specificity of radiography for the detection of articular tissue damage 

associated with OA, and its poor sensitivity to change at follow-up imaging, are inherent 

limitations of radiography. 

 Another limitation is the presence of variations in semiflexed knee positioning, which 

occur during image acquisition in trials and clinical practice despite standardization. Kinds and 

colleagues showed that such variations have significant influence on the quantitative 

measurement of various radiographic parameters of OA including JSW [4]. Thus, better 
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standardization needs to be achieved during radiographic acquisition. Despite these limitations, 

radiography remains the gold standard for structural modification in clinical trials of knee OA. 

Semiquantitative assessments of knee OA features 

 The severity of OA can be estimated using semiquantitative scoring systems. Published 

atlases provide images that represent specific grades [1]. The Kellgren and Lawrence (KL) grade 

[5] is a widely accepted scheme used for defining the presence or absence of OA, usually using 

grade 2 disease as the threshold. However, KL grading has its limitations too; in particular, KL 

grade 3 includes all degrees of JSN, regardless of the actual extent. Felson and colleagues have 

suggested a modification of KL grading to improve the sensitivity to change in longitudinal knee 

OA studies [6]. They recommend that OA be defined by a combination of joint space loss and 

definite osteophytes on radiography in a knee which did not have this combination on the 

previous radiographic assessment. For OA progression, they recommend a focus on JSN alone 

using either a semiquantitative [7] or a quantitative approach.  

 The Osteoarthritis Research Society International (OARSI) atlas [1] takes a different tack 

and grades tibiofemoral JSW and osteophytes separately for each compartment of the knee. This 

compartmental scoring appears to be more sensitive to longitudinal radiographic changes than 

KL grading. A recent study using data from the OA Initiative highlighted the importance of 

centralized radiographic assessment in regard to observer reliability, as even expert readers apply 

different thresholds when scoring JSN [8].  

Quantitative assessments of joint space width 

 Quantitative measures of JSW use a "ruler", either a physical device or a software 

application, to measure the JSW as the distance between the projected femoral and tibial margins 
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on the image (Figure 1). The femoral margin is defined as the projected edge of the bone, while 

the software usually determines the tibial margin as a bright band corresponding to the projection 

of the X-ray beam through the radio-dense cortical shell at the base of the tibial plateau. 

Quantification of JSW using image processing software does require a digital version of the 

image which can be provided for plain films by a radiographic film digitizer, or files can be 

analyzed directly for fully digital modalities such as computed radiography and digital 

radiography. Minimum JSW is the standard metric, but some groups have investigated location-

specific JSW as well [9-14]. 

 Studies using the software methods have demonstrated improved precision over the 

manual method and semi-quantitative scoring [15,16]. More recently, these methods have been 

evaluated using longitudinal knee radiographs to quantify the responsiveness to change [17]. 

Various degrees of responsiveness have been observed depending on the degree of OA severity, 

length of the follow-up, and the knee positioning protocol [10,11,13,14,18,19]. 

 Measurements of JSW obtained from radiographs of knee OA have been found to be 

reliable, especially when the study lasted longer than two years and when the radiographs were 

obtained with the knee in a standardized flexed position [20]. Studies of hip OA have shown 

conflicting results when correlating JSW and symptoms. However, several studies have 

demonstrated that JSW can predict hip joint replacement [21].  

Recent studies using radiographic evaluation of OA and associated features 

 A prospective observational cohort study by Harvey and colleagues associated leg length 

inequality of ≥1 cm with prevalent radiographic and symptomatic OA in the shorter leg, and 

increased odds of progressive OA in the shorter leg over 30 months [22]. This study showed that 

leg length inequality should be a modifiable risk factor for knee OA. Duryea and colleagues 
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compared the responsiveness of radiographic JSW using automated software with MR imaging-

derived measures of cartilage morphometry for OA progression [19]. Results demonstrated that 

measures of location-specific JSW, using a software analysis of digital knee radiographic images, 

were comparable with MR imaging in detecting OA progression. Although the limitations of 

radiography are known, the study showed that when the lower cost and greater accessibility of 

radiography are compared to MR imaging, radiography still has a role to play in OA trials. A 

clinical trial by Mazzuca and colleagues showed varus malalignment of the lower limb negated 

the slowing of structural progression of medial JSN by doxycycline [23]. It remains to be seen if 

the same effect can be obtained on MR imaging-based evaluation of OA progression. 

 Using data from the Cohort Hip & Cohort Knee study, Kinds and colleagues showed that 

measuring osteophyte area (odds ratio (OR) =7.0) and minimum JSW (OR=0.7), in addition to 

demographic and clinical characteristics, improved the prediction of radiographic OA occurring 

five years later (area under curve receiver operating characteristic=0.74 vs 0.64 without 

radiographic features) in patients with knee pain at baseline [24]. A cross-sectional study based 

on the same cohort of patients showed that, in patients with early symptomatic knee OA, 

osteophytosis, bony enlargement, crepitus, pain, and higher BMI were associated with lower 

knee flexion [25]. JSN was associated with lower range of motion in all planes. In addition, 

osteophytosis, flattening of the femoral head, femoral buttressing, pain, morning stiffness, male 

gender, and higher BMI were found to be associated with poorer range of motion in the hip, in 

two planes. 

 Two publications from a large-scale Japanese population-based study demonstrated that 

occupational activities involving kneeling and squatting [26], as well as obesity, hypertension 

and dyslipidemia [27] were associated with lower medial minimum JSW when compared to 
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controls. Another cross sectional study found that a low level of vitamin D was associated with 

knee pain but not radiographic OA [28]. A longitudinal study by the same group showed 

accumulation of metabolic syndrome components (obesity, hypertension, dyslipidemia, and 

impaired glucose tolerance) is significantly related to occurrence and progression of radiographic 

knee OA [29].  

 It is interesting to note that two older methods–bone texture analysis and tomosynthesis–

have experienced a revival lately. Bone texture analysis extracts information on two-dimensional 

trabecular bone texture from conventional radiography, that directly relates to three-dimensional 

bone structure [30,31]. The authors of a recent study showed that bone texture may be a predictor 

of progression of tibiofemoral OA. Whether bone texture correlates with other changes of 

subchondral bone such as MR imaging-detected bone marrow lesions (BMLs) or sclerosis 

remains to be seen. Tomosynthesis generates an arbitrary number of section images from a single 

pass of the X-ray tube. It has been shown that digital tomosynthesis improves sensitivity for 

depicting lesions in the chest, the breast and in rheumatoid arthritis [32-35]. However, Hayashi et 

al. demonstrated that tomosynthesis is more sensitive to osteophytes and subchondral cysts than 

radiography, using 3T MR imaging as the reference [36].  The clinical availability of these 

systems is currently limited, true, but the potential of this technique for OA research might be 

worth exploring. 

MR imaging 

Although not routinely used in clinical management of OA patients, MR has become a 

key imaging tool for OA research [37-41] thanks to its ability to visualize pathologies that are 

not detected on radiography, i.e. articular cartilage, menisci, ligaments, synovium, capsular 

structures, fluid collections and bone marrow (Figure 2-5)[42-56]. Additionally, with MR 
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imaging osteoarthritis can be classified into hypertrophic and atrophic phenotypes, according to 

the size of osteophytes [57]. Based on some of these pathological features, an MR imaging-based 

definition of OA has recently been proposed [58]. Tibiofemoral OA on MR imaging is defined as 

either (a) the presence of both definite osteophyte formation AND full thickness cartilage loss, 

OR (b) the presence of one of the features in (a) AND one of the following: subchondral BML or 

cyst not associated with meniscal or ligamentous attachments; meniscal subluxation, maceration 

or degenerative (horizontal) tear; partial thickness cartilage loss; and bone attrition.  

 With MR imaging, the four things can be achieved: 

• the joint can be evaluated as a whole organ 

• pathologic changes of preradiographic OA can be detected at a much earlier stage 

of the disease 

• physiologic changes within joint tissues (e.g. cartilage and menisci) can be 

assessed before morphologic changes become apparent 

• multiple tissue changes can be monitored simultaneously over several time points 

(Figure 6) 

Importantly, the use of MR imaging has led to significant findings about the association 

of pain with BMLs [59] and synovitis [60], with implications for future OA clinical trials. 

Systematic reviews have demonstrated that MR imaging biomarkers in OA have concurrent and 

predictive validity, with good responsiveness and reliability [61,62]. The Osteoarthritis Research 

Society International (OARSI) - US Food and Drug Administration working group now 

recommends MR imaging as a suitable imaging tool for cartilage morphology in clinical 

trials[37].  
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 The following sections focus on recent advances in the use of MR as an imaging tool in 

OA research. First, MR imaging-based semiquantitative OA scoring systems that were published 

after 2008 are reviewed. Second, research efforts in quantitative MR imaging techniques are 

described. Last, developments in compositional/physiologic MR imaging techniques are 

reviewed. 

Semiquantitative MR imaging scoring systems for knee OA 

In addition to the three well-established scoring systems–the Whole Organ Magnetic 

Resonance Imaging Score (WORMS) [63], the Knee Osteoarthritis Scoring System (KOSS) [64], 

and the Boston Leeds Osteoarthritis Knee Score (BLOKS) [65]–a new scoring system called the 

MR Imaging Osteoarthritis Knee Score (MOAKS) has been added to the literature (Table 1, 2). 

Of the three systems, WORMS and BLOKS have been widely disseminated and used, though 

only a limited number of studies have directly compared the two systems. Two recent studies by 

Lynch et al and Felson et al were helpful in identifying the relative strengths and weaknesses of 

the two systems in regard to certain features assumed to be most relevant to the natural history of 

the disease, including cartilage, meniscus and BMLs [66,67]. WORMS and BLOKS have their 

weaknesses and it may be difficult for investigators to choose which is more suitable for the 

particular aims of the study they are planning. For instance, the WORMS meniscal scoring 

method mixes multiple constructs, while in BLOKS, application of the BML scoring system is 

cumbersome and complex, and some of the scoring appears redundant. Additionally, both these 

systems have undergone unpublished modifications that make it difficult for general readers to 

determine the differences between the original description and how they have been applied in 

later research. The use of within-grade changes for longitudinal assessment of cartilage damage 

and BMLs is a good example [68]. Within-grade scoring describes progression or improvement 
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of a lesion that does not meet the criteria of a full grade change but does represent a definite 

visual change. In the original publication of WORMS, for example, there was no mention of 

scoring of within-grade changes as the WORMS publication only used a cross-sectional dataset. 

It has become common practice to incorporate these within-grade changes whenever longitudinal 

cartilage assessment is contemplated. A recent study by Roemer and colleagues demonstrated 

that within-grade changes in semiquantitative MR imaging assessment of cartilage and BMLs are 

valid and their use may increase the sensitivity of semiquantitative readings in detecting 

longitudinal changes in these structures [68].  

 Alas, there has never been a published correction or an addendum to the original 

WORMS publication. The effort to evolve semiquantitative scoring methods that circumvent the 

limitations of WORMS and BLOKS led to the development of MOAKS. By integrating expert 

readers' experience with all of the available scoring tools and the published data comparing 

different scoring systems, MOAKS refined the scoring of BMLs, added subregional assessment, 

omitted some redundancy in cartilage and BML scoring, and refined elements of meniscal 

morphology.  

 For BML size assessment, the threshold for grading in terms of percentage of subregional 

volume was modified. Also, rather than a lesion-based approach, the subregion-based approach 

of WORMS was incorporated. The number of lesions is counted, but the percentage of BML in 

the area of the adjacent subchondral plate is no longer recorded. There is only one cartilage score 

using a WORMS-like subregional approach. Synovitis as detected in the form of high signal 

intensity in the Hoffa fat pad is now called ”Hoffa-synovitis”. Effusion was renamed ”effusion-

synovitis”, as high signal within the joint cavity on T2-weighted images incorporates both joint 

fluid (i.e. effusion) and synovial thickening (i.e. synovitis). A detailed differentiation of the 
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different types of meniscal tears, meniscal hypertrophy, partial maceration and progressive 

partial maceration has been incorporated allowing for detailed assessment of meniscal damage 

over time (Figure 7). The scoring of non-cystic BML percentage, osteophytes, meniscal 

extrusion and signal, ligaments and periarticular features remain unchanged from BLOKS. 

 The MOAKS system is currently being deployed in the Meniscal Tear in Osteoarthritis 

Research (MeTeOR) trial [69] and the Pivotal Osteoarthritis Initiative Magnetic Resonance 

Imaging Analyses (POMA) [70]. However, it is a new scoring system and needs more data to 

demonstrate its validity and reliability when applied to OA studies. 

 Synovitis is an important feature of OA, with a demonstrated association with pain 

[60,71]. Although synovitis can be evaluated with non-contrast-enhanced MR imaging by using 

the presence of signal changes in Hoffa fat pad or joint effusion as an indirect marker of 

synovitis, only contrast-enhanced MR imaging can reveal the true extent of synovial 

inflammation (Figure 4) [72]. Table 3 summarizes currently available comprehensive scoring 

systems for synovitis in knee OA based on contrast-enhanced MR imaging. These scoring 

systems could potentially be used in clinical trials of new OA drugs that target synovitis. 

Semiquantitative MR imaging whole organ scoring system for hand OA 

 Conventional radiography is still the imaging modality of choice clinically for OA of the 

hand, but the use of more sensitive imaging techniques such as ultrasound and MR imaging is 

becoming more common, especially for research purposes. However, the literature concerning 

MR imaging of pathological features of hand OA is still sparse, and studies have been performed 

without applying standardized methods [73-79]. In 2011, Haugen et al proposed a 

semiquantitative MR imaging scoring system for hand OA features, called the Oslo Hand OA 

MRI Score (OHOA-MRI) [80]: it incorporates osteophyte presence and joint space narrowing (0-
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3 scale) and malalignment (absence/presence) in analogue to the OARSI atlas [1]. Cysts and 

collateral ligament pathology are also recorded as absent or present. These features are assessed 

at eight locations (distal and proximal interphalangeal (DIP and PIP) joints of the second, third, 

fourth and fifth fingers) of the dominant hand using an extremity 1.0 T MR system. An atlas is 

included in the publication to facilitate scoring. Each MR image feature was analyzed and 

stratified for joint groups and as aggregated scores (i.e. DIP and PIP). Key features such as 

synovitis, flexor tenosynovitis, erosions, osteophytes, joint space narrowing and BMLs showed 

good to very good intra- and inter-reader reliability [81].  

 Using this scoring system, Haugen et al showed that MR imaging could detect 

approximately twice as many joints with erosions and osteophytes as conventional radiography 

(p<0.001), but identification of joint space narrowing, cysts and malalignment was similar [82]. 

The prevalence of most MR imaging features increased with radiographic severity, but synovitis 

was more frequent in joints with mild osteoarthritis than with moderate/severe osteoarthritis. The 

same group of investigators also showed in another study that MR imaging-assessed 

moderate/severe synovitis, BMLs, erosions, attrition and osteophytes were associated with joint 

tenderness independently of each other [83]. Weaker associations were found between the sum 

score of MR imaging-defined attrition and the Functional Index of Hand Osteoarthritis (FIHOA), 

and between the sum score of osteophytes and grip strength [83]. These studies demonstrated 

that some of the semiquantitatively assessed MR imaging features of hand OA may be potential 

targets for therapeutic interventions. 

Semiquantitative MR imaging whole organ scoring system for hip OA 

Compared to knee OA, few studies have focused on the hip joint, and only one used an approach 

similar to the ”whole-organ” evaluation of knee OA [84,85]. The hip joint has a spherical 
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structure and its very thin covering of articular hyaline cartilage makes MR imaging assessment 

of the hip much more challenging than the knee [86]. Patients with OA of the hip often have to 

be followed for a long time to assess the natural course of joint pathology, or to evaluate surgical 

or pharmacological treatment effects. Non-invasive, follow-up methods are necessary, and 

surrogate markers based on MR imaging would be very useful. Following this line of thought,  a 

novel tool for use in observational studies and clinical trials of hip joints, a whole-organ 

semiquantitative multi-feature scoring method called the Hip Osteoarthritis MRI Scoring System 

(HOAMS) was introduced by Roemer et al in 2011 [87].  

 In HOAMS, fourteen articular features are assessed: cartilage morphology, subchondral 

bone marrow lesions, subchondral cysts, osteophytes, acetabular labrum, synovitis (only scored 

when contrast-enhanced sequences were available), joint effusion, loose bodies, attrition, 

dysplasia, trochanteric bursitis/insertional tendonitis of the greater trochanter, labral hypertrophy, 

paralabral cysts and herniation pits at the supero-lateral femoral neck. Cartilage and osteophytes 

are scored on a 0-4 scale; BMLs, subchondral cysts and labral pathology are graded 0-3; 

synovitis and effusion are graded 0-2; and all other lesions are scored 0 (absent) or 1 (present). 

Cartilage morphology is scored in nine subregions, and BMLs and subchondral cysts in 15 

subregions for acetabular and femoral subchondral bone marrow assessment. MR imaging 

sequences acquired in the protocol include coronal and axial non fat-suppressed T1-weighted 

spin echo, coronal and sagittal proton density-weighted fat-suppressed fast spin-echo, and where 

indicated coronal and axial contrast-enhanced T1-weighted sequences. 

 Whether this scoring tool is similarly applicable to longitudinal studies, particularly with 

regard to its responsiveness and predictive validity remains to be seen. HOAMS demonstrated 

satisfactory reliability and good agreement concerning intra- and inter-observer assessment, but 
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further validation, assessment of responsiveness and iterative refinement of the scoring system 

are still needed to maximize its utility in clinical trials and epidemiological studies. 

Quantitative cartilage morphometry 

Quantitative measurement of cartilage morphology segments the cartilage image (Figure 8,9) and 

exploits the three-dimensional nature of MR imaging data sets to evaluate tissue dimensions 

(such as thickness and volume) or signal as continuous variables. Examples of nomenclature for 

MR imaging-based cartilage measures were proposed by Eckstein and colleagues [88]:. VC = 

cartilage volume; tAB = total area of subchondral bone; dAB = denuded area of subchondral 

bone, ThCtAB.Me = mean cartilage thickness over the tAB. As many of these measures are 

strongly related, Buck and colleagues identified an efficient subset of core measures–tAB, and 

dAB–that can provide a comprehensive description of cartilage morphology and its longitudinal 

changes, in knees with or without OA [89]. The same group also proposed a strategy (the ordered 

values approach) for more efficiently analyzing longitudinal changes in (subregional) cartilage 

thickness [90] and found that determining the magnitude of subregional cartilage thickness 

changes independent of anatomic location provided improved discrimination between OA 

participants and healthy subjects longitudinally. Further, the ordered values approach was found 

to be superior in detecting risk factors of OA progression [91]. Wirth and colleagues proposed an 

"extended ordered values approach" with better discrimination of cartilage thickness changes in 

KL grade 2 vs. KL grade3 knees than measures of total plate and subregional cartilage thickness 

or changes in radiographic JSW [92].  

 Quantitative measurements of cartilage volume and thickness have been used in several 

intervention studies. Ding and colleagues examined the associations between non-steroidal anti-

inflammatory drugs (NSAIDs) and changes in knee cartilage volume [93]. Comparing users of 
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cyclooxygenase-2 inhibitors with NSAIDs users, the latter had more knee cartilage volume loss. 

Raynauld and colleagues after evaluating the effect of celecoxib on cartilage volume loss over 

one year in knee OA [94], found that the drug did not show a protective effect on knee cartilage 

loss. Wei and colleagues conducted a cross-sectional study of middle-aged and elderly women 

and showed parity, but not use of hormone replacement therapy or oral contraceptives, was 

independently associated with lower cartilage volume primarily in the tibial compartment [95]. 

Joint distraction was found to be very effective in regenerating cartilage, by increasing its 

thickness and decreasing denuded areas of subchondral bone, and with the effects lasting for 

months after the intervention [96] 

Bennell and colleagues showed that increased dynamic medial knee load was associated 

with a greater loss of medial cartilage volume over one year [97]. Eckstein and colleagues 

compared knees with frequent pain with knees without pain, and found higher rates of (medial 

femorotibial) cartilage loss over one year in the painful knees compared to the painless knees 

[98]. Adjustment or stratification for radiographic disease stage did not affect this association. 

The authors concluded that enrolling participants with frequent knee pain in clinical trials could 

increase the observed rate of structural progression. The same group also showed that: 

radiographic and MR cartilage morphometry features suggestive of advanced OA (high KL 

grade) appear to be associated with greater cartilage thickness loss [99, 100]. Knees with early 

radiographic OA (KL grade 2) display thicker cartilage than healthy reference knees or the 

contralateral knees without radiographic findings of OA, specifically in the external femoral 

subregions [101, 102].  

Quantitative measures of articular cartilage structure, such as cartilage thickness loss and 

denuded areas of subchondral bone have been shown to predict an important clinical outcome, i.e. 
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knee replacement [103]. However, long-term observations are needed to achieve robust results 

on tibiofemoral cartilage thickness loss in individual knees in observational OA studies, by 

comparing one year with two and four year rates of change in OA knees [104]. Further, 

investigators intending to use the quantitative morphometry approach in a multicenter study 

should be aware of at least one pitfall: quantitative data collected from different segmentation 

teams cannot be pooled unless equivalence is demonstrated for the cartilage metrics of interest: 

Schneider and colleagues showed that segmentation-team differences dominated measurement 

variability in most cartilage regions for all image series [105].  

 Functional studies in healthy subjects reported nocturnal changes of cartilage thickness, 

with more morning post-exercise deformation than evening post-exercise deformation [106]. 

Osteoarthritic cartilage tended to show more deformation upon loading than healthy cartilage, 

suggesting that knee OA affects the mechanical properties of cartilage, and the pattern of in vivo 

deformation indicated that cartilage loss in OA progression is mechanically driven [107]. 

Similarly, a correlation between changes in cartilage thickness and those in a molecular serum 

marker (i.e. cartilage oligomeric matrix protein (COMP)) after drop landing was reported [108]. 

Quantitative MR imaging analysis of tissues other than cartilage 

 Several authors have reported studies using MR imaging to quantitatively evaluate the 

menisci. Wirth and colleagues presented a technique for three-dimensional and quantitative 

analysis of meniscal shape, position and signal intensity [109], which was shown to display 

adequate inter-observer and intra-observer precision [110,111]. When examining healthy 

reference subjects using these techniques, the authors reported that meniscus surface area 

strongly corresponds with (ipsilateral) tibial plateau area across both sexes, and that tibial 

coverage by the meniscus is similar between men and women. 
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Swanson et al developed an algorithm to semi-automatically segment the meniscus in a series of 

MR images [112]. Their method produced accurate and consistent segmentations of the meniscus 

when compared to the manual segmentations. Wenger and colleagues described an association 

between knee pain and meniscal extrusion using a between-knee, intra-person comparison using 

three-dimensional measures of extrusion [113].  

 Other than menisci, investigators have used quantitative MR imaging to assess BMLs 

[114,115], synovitis [116] and joint effusion [117]. However, it should be kept in mind that using 

segmentation approaches for ill-defined lesions such as BMLs is more challenging than 

segmentation of clearly delineated structures such as cartilage, menisci and effusion [41].  

Compositional MR imaging of cartilage and menisci 

 Compositional MR imaging can assess the biochemical properties of different joint 

tissues and thus is very sensitive to early, pre-morphologic changes that cannot be seen on 

conventional MR imaging. The vast majority of studies applying compositional MR imaging 

have focused on cartilage, although the technique can also be used to assess other tissues such as 

the meniscus or ligaments. Compositional imaging of cartilage matrix changes can be performed 

using advanced MR imaging techniques such as dGEMRIC (Figure 10), T1 rho, and T2 mapping 

(Figure 11). For detailed descriptions of these techniques, readers are referred to the published 

review articles [118,119].  

 In a placebo-controlled double-blind pilot trial of collagen hydrolysate for mild knee OA, 

McAlindon and colleagues [120] demonstrated that the dGEMRIC score increased in tibial 

cartilage regions of interest in subjects receiving collagen hydrolysate, and decreased in the 

placebo group. A significant difference was observed at 24 weeks. It will be of interest to see if 

macroscopic cartilage changes are associated with those dGEMRIC findings in future studies. 
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Another study [121] showed an increase in dGEMRIC indices of knee cartilage in asymptomatic 

untrained women who were enrolled in a 10-week running program, when compared to 

sedentary controls. Souza and colleagues [122] showed that acute loading of the knee joint 

resulted in a significant decrease in T1 rho and T2 relaxation times of the medial tibiofemoral 

compartment, and especially in cartilage regions with small focal defects. These data suggest that 

changes of T1 rho values under mechanical loading may be related to the biomechanical and 

structural properties of cartilage. 

 Hovis and colleagues reported that light exercise was associated with low cartilage T2 

values but moderate and strenuous exercise was associated with high T2 values in women, 

suggesting that activity levels can effect cartilage composition [123]. Another study looked at the 

normal control group at baseline and two years later and found a high prevalence of structural 

abnormalities and a significant increase in cartilage T2 values in the tibiofemoral but not the 

patellofemoral joint [124]. In an interventional study assessing the effect of weight loss on 

articular cartilage, Anandacoomarasamy and colleagues reported that improved articular 

cartilage quality was reflected as an increase in the dGEMRIC index over one year for the medial 

but not the lateral compartment [125]. This finding highlights the role of weight loss in possible 

clinical and structural improvement. 

 Williams and colleagues described intrameniscal biochemical alterations using ultra-short 

echo time-enhanced T2* mapping [126]. The authors found significant elevations of ultra-short 

echo time-enhanced-T2* values in the menisci of subjects with ACL injuries but who showed no 

clinical evidence of subsurface meniscal abnormality. 

 Novel compositional techniques have been explored further. Raya and coworkers found 

that in vivo diffusion tensor imaging with a 7T MR system could distinguish OA knees from 
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non-OA knees better than T2 mapping [127]. Other work on 7T systems reported on the 

reproducibility of the method in vivo [128,129]. Another compositional technique that might 

reward further exploration is T2* mapping of cartilage [130].These techniques show promise, 

but they will need to be practical and deployable using standard MR imaging systems before 

they can be widely used as a research or a clinical diagnostic tool. 

Ultrasound 

 Ultrasound imaging allows multiplanar and real time imaging without radiation exposure 

at relatively low cost. It can offer reliable assessment of OA-associated features, including 

inflammatory and structural abnormalities, without contrast administration [131]. Limitations of 

ultrasound include that it is an operator-dependent technique and that the physical properties of 

sound limit its ability to assess deeper articular structures and the subchondral bone (Figure 12).  

 Ultrasound is useful for evaluation of cortical erosive changes and synovitis in 

inflammatory arthritis [132]. In OA, the ability to detect synovial pathology is the major 

advantage ultrasound has over conventional radiography. Current generation ultrasound 

technology can detect synovial pathologies including hypertrophy, increased vascularity and the 

presence of synovial fluid in joints affected by arthritis (Figure 13) [131]. The Outcome 

Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) Ultrasonography Taskforce 

reported an ultrasound-definition of synovial hypertrophy as “abnormal hypoechoic (relative to 

subdermal fat, but sometimes may be isoechoic or hyperechoic) intra-articular tissue that is non-

displaceable and poorly compressible and which may exhibit Doppler” [133]. Although this 

definition was developed for use in rheumatoid arthritis, it may also be applied to OA because 

the difference in synovial inflammation between OA and rheumatoid arthritis is largely 

quantitative rather than qualitative [131].  
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 A preliminary ultrasonographic scoring system for features of hand OA was published 

recently [134]. This scoring system included evaluation of grey-scale synovitis and power 

Doppler signal in 15 joints of the hand. These features were assessed for their presence/absence 

and if present were scored semiquantitatively using a 1-3 scale. Overall, the reliability exercise 

demonstrated moderately good intra- and inter-reader reliability. This study has demonstrated 

that an ultrasound outcome measure suitable for multicenter trials assessing hand OA is feasible 

and likely to be reliable, and has provided a foundation for further development.  

 Ultrasound has been increasingly used for assessment of OA of the hand (Figure 13). 

Kortekaas and colleagues showed that ultrasound-detected osteophytes and JSN are associated 

with hand pain [135]. In a more recent study, the same group of authors showed that signs of 

inflammation appear more frequently on ultrasound in erosive OA hands than in non-erosive OA 

hands, not only in erosive joints but also in non-erosive joints [136]. This finding suggests the 

presence of an underlying systemic cause for erosive evolution. Klauser and colleagues 

evaluated the efficacy of weekly ultrasound-guided intra-articular injections of hyaluronic acid 

[137]. A decrease in pain correlated with a decrease in synovial thickening and power Doppler 

ultrasound score between baseline and the end of therapy. To take advantage of ultrasound and 

MR imaging, Iagnocco and colleagues performed integrated MR imaging and ultrasound real-

time fusion imaging in hand and wrist OA, and found a high concordance of the bony profile 

visualization at the level of osteophytes [77].  

 Evaluation of synovitis in OA of the knee has also been documented (Figure 14) [102]. A 

cross sectional, multi-center European study supported by EULAR analyzed 600 patients with 

painful knee OA, and found that ultrasound-detected synovitis correlated with advanced 

radiographic OA and clinical signs and symptoms suggestive of an inflammatory “flare.” 
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However, ultrasound-detected synovitis was not a predictor of subsequent joint replacement. 

Additionally, ultrasound signs of synovitis were found to be reflected metabolically by markers 

of joint tissue metabolism [139]. Saarakkala and colleagues evaluated the diagnostic 

performance of knee ultrasound for the detection of degenerative changes of articular cartilage, 

using arthroscopic findings as the reference [140]. They found that positive ultrasound findings 

are strong indicators of cartilage degeneration, but negative findings do not exclude cartilage 

degeneration. Kawaguchi and colleagues used ultrasound to look at medial radial displacement 

of the meniscus in the supine weight-bearing positions [141]. They showed the medial meniscus 

was significantly displaced radially by weight-bearing in control knees and in those with KL 

grade 1-3. Significant differences were noted between KL grade ≥2 knees and controls in the 

supine and the standing positions, and displacement increased in all weight-bearing knees at one 

year follow-up, except for KL grade 4 knees. 

 Chao and colleagues assessed whether inflammation on ultrasound can predict clinical 

response to intra-articular corticosteroid injections in patients with knee OA [142]. Somewhat 

unexpectedly, there was a significantly greater improvement in pain among non-inflammatory 

patients than among inflammatory patients 12 weeks post injection. A small sample size, a lack 

of power Doppler imaging, and the fact that only the suprapatellar pouch was imaged, could 

have led to these unexpected results. Wu and colleagues investigated the association of 

ultrasound features with pain and the functional scores in patients with equal radiographic grades 

of knee OA in both knees [143]. They showed ultrasound-detected inflammatory features, 

including suprapatellar effusion and medial compartment synovitis, were positively and linearly 

associated with knee pain in motion. Medial compartment synovitis was also degree-dependently 

associated with pain at rest and with the presence of medial knee pain. These findings confirmed 
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the association between synovitis and knee pain, which has also been reported in MR imaging-

based studies [60]. 

Nuclear medicine 

 Use of 99mTc-hydroxymethane diphosphonate (HDP) scintigraphy and 2-18F-fluoro-2-

deoxy–D-glucose (18-FDG) or 18F-fluoride (18-F-) positron emission tomography (PET) for 

assessing OA have been described in the literature (Figure 15,16) [144]. Bone scintigraphy is a 

simple examination that can provide a full-body survey that helps to discriminate between soft 

tissues and bone origin of pain, and to locate the site of pain in patients with complex symptoms 

[144]. 18-FDG PET can demonstrate the site of synovitis and bone marrow lesions associated 

with OA [145]. 18-F- PET can be used for bone imaging; the amount of tracer uptake depends on 

the regional blood flow and bone remodeling conditions. An animal study by Umemoto and 

colleagues using a rat OA model showed that uptake of 18-F- was significantly higher in knees 

that had undergone anterior cruciate ligament transection than in sham-operated knees, and was 

higher in all the compartments of the tibiofemoral joint eight weeks postoperatively [146]. An in 

vivo study by Temmerman and colleagues demonstrated a significant increase in bone 

metabolism in the proximal femur of patients with symptomatic hip OA [147]. These studies 

showed that 18-F- PET is a potentially useful technique for early detection of OA changes.  

 Another imaging technique in the nuclear medicine category is single photon emission 

tomography (SPECT). Currently, researchers are searching for a cartilage-specific 

radiopharmaceutical agent that can be applied to OA imaging. A recent ex vivo study by Cachin 

and colleagues using 99mTc-N-triethylammonium-3-proyl-[15]ane-N5 (NTP 15-5), which binds 

to cartilage, quantified the uptake by human articular cartilage relative to bone 99m-Tc-HDP 

radiotracer [148]. Visual analysis of fused SPECT-CT slices showed selective, intense 99mTc-
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NTP 15-5 accumulation in articular cartilage, whereas 99mTc-HDP binding was low. A cartilage 

defect visualized on CT was associated with focal decreased uptake of 99m-Tc-NTP 15-5. Thus, 

it is hoped this agent may be applied to human cartilage molecular imaging and clinical 

applications in OA staging and monitoring. 

 Limitations of radioisotope methods include poor anatomical resolution and the use of 

ionizing radiation. However, there are ways to overcome these issues. Hybrid technologies such 

as PET-CT and PET-MR imaging combine functional imaging with high resolution anatomical 

imaging. A study by Moon and colleagues showed PET-CT could detect active inflammation in 

patients with OA of the shoulder [149]. Techniques to achieve the optimum registration of PET 

and MR images are being developed [150]. Moreover, PET scanners that image small parts of 

the body have been developed [151]. Although originally developed for breast imaging, these 

small-part scanners may be useful for imaging of joints [144]. The small-part PET scanners have 

the advantages of lower operating costs and lower radiation exposure, while retaining high 

spatial resolution and sensitivity for detection of lesions. 

CT  

 CT is more useful than MR imaging for depicting cortical bone and soft tissue 

calcifications. It has an established role in assessing facet joint OA of the spine in both clinical 

and research settings [152]. Using a CT-based semiquantitative grading system of facet joint OA, 

a population-based study by Kalichman and colleagues showed a high prevalence of facet joint 

OA and that the prevalence of facet joint OA increases with age, with the highest prevalence at 

the L4-L5 spinal level [153]. Also, in the same cohort of subjects, several associations were 

observed: self-reported back pain with spinal stenosis [154]; abdominal aortic calcification with 

facet joint OA [155]; obesity with higher prevalence of facet joint OA [156]; and increasing age 
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with higher prevalence of disc narrowing, facet joint OA, and degenerative spondylolisthesis 

[156]. A recent animal study by Kim and colleagues used micro-CT to assess the cartilage 

alterations in the facet joint of rats, and showed that monodoium iodoacetate injection into facet 

joints provided a useful model for the study of OA changes in the facet joint and indicated that 

facet joint degeneration is a major cause of low back pain [157].  

CT and MR arthrography 

 Arthrography using CT or MR imaging enables evaluation of damage to articular 

cartilage with a high anatomical resolution in multiple planes. CT arthrography can be performed 

using a single (iodine alone) or double-contrast (iodine and air) technique [144]. In general, the 

single-contrast technique is considered easier to perform and to cause less pain to patients [158]. 

To avoid beam-hardening artifacts, the contrast material can be diluted with saline or local 

anesthetics [144]. For MR arthrography, gadolinium-DTPA is injected intra-articularly to 

delineate superficial cartilage defects. The optimum concentration of gadolinium-DTPA varies 

depending on the magnetic field strength of the MR system [159]. It has been shown that iodine-

based and gadolinium-based contrast agents can be mixed, enabling combined MR arthrography 

and CT arthrography examinations [160]. These arthrographic examinations have a low risk of 

infection from the intra-articular injection [161]. Other risks include pain and vasovagal 

reactions, and systemic allergic reactions. CT arthrography exposes patients to radiation but MR 

arthrography does not. 

 At present, CT arthrography is the most accurate method for evaluating cartilage 

thickness. It offers high spatial resolution and high contrast between the low attenuating cartilage 

and high attenuating superficial (contrast material filling the joint space) and deep (subchondral 

bone) boundaries [144]. Cadaveric studies have shown that CT arthrography is more accurate 
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than MR imaging [162]  or MR arthrography [163]. However, a more recent study showed 

evaluation of hip cartilage thickness in the coronal plane by MR arthrography is similarly 

accurate compared to CT arthrography (Figure. 17) [164].  For other planes, CT arthrography 

showed better diagnostic performance than MR arthrography.  

 Superficial focal cartilage lesions are well delineated by both arthrographic techniques 

and appear as areas filled with the intra-articular contrast agent. Again, CT arthrography offers 

higher spatial resolution as well as higher contrast between the cartilage and the intra-articular 

contrast agent filling the joint space, leading to a high degree of confidence in depicting these 

lesions with a higher inter-reader reproducibility [165].  

 Regarding subchondral changes, MR arthrography is the only technique that allows 

delineation of subchondral bone marrow lesions on the fluid-sensitive sequences with fat 

suppression [144]. CT arthrography is better than MR arthrography at depicting subchondral 

bone sclerosis and osteophytes. Both techniques enable visualization of central osteophytes, 

which are associated with more severe changes of OA than marginal osteophytes [166].  

 Because of the high cost (due to the use of contrast agents), invasive nature and potential, 

albeit low, risk associated with intra-articular injection, arthrographic examinations are rarely 

used in large scale clinical or epidemiological OA studies. However, arthrography has been used 

in a small-scale clinical study of post-traumatic OA [167]. Tamura and colleagues used high-

resolution CT arthrography to examine the 3D progression pattern of early acetabular cartilage 

damage in 32 patients with hip dysplasia [168]. They found the lateral-medial ratio, which was 

defined as cartilage thickness in the lateral zone divided by that in the medial zone, may be a 

sensitive index for quantifying early cartilage damage associated with extent of labral disorders. 

Summary 
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Since publication of the previous edition of this review article in 2008, the OA imaging field has 

been greatly driven by publically available images and analyses that have come out of the 

Osteoarthritis Initiative (OAI). OAI study design, image archive, and available image analyses 

and science have been recently summarized in a perspective [38]. In a research setting, 

conventional radiography is still commonly used to semiquantitatively and quantitatively 

evaluate structural OA features, such as osteophytes and JSN. Radiographic JSW measurement is 

still a recommended option for trials of structural modification, with the understanding that the 

concept of JSW represents a number of pathologies including cartilage and meniscal damage, 

and trial duration may be long. MR imaging is the currently most important imaging modality for 

research into OA, and investigators may select from semiquantitative, quantitative and 

compositional techniques, depending on the aims of the study. Ultrasound is commonly used in 

hand OA studies and is particularly useful for evaluation of synovitis. Nuclear medicine, CT and 

CT-MR arthrography can also be used for evaluation of OA features, but they are rarely used in 

large-scale clinical or epidemiological studies. 
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Figures 
 

 
 

Figure 1. Automated computer measurement of JSW of the medial tibial plateau of the knee. 

Minimum JSW is measured using software (Holy’s software, Claude Bernard University, Lyon, 

France) in which the joint space contour is automatically delineated by the computer with the 

help of an edge-based algorithm. The area of measurement of minimum JSW is defined by two 

vertical lines and two horizontal lines obtained by a single click on the non osteophytic outer 

edge of the medial femoral condyle and a single click on the inner edge of the medial tibial 

plateau close to the articular surface. Within these landmarks, the delineation of the bone edges 

of the medial femoral condyle and medial tibial plateau floor, in addition to the minimum JSW, 

are automatically obtained. 
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Figure 2. Examples of 1.5-T MR imaging of advanced OA. (A) Sagittal T1-weighted MR image 

of post traumatic ankle OA shows large periarticular osteophytes (arrows). (B) Coronal T2-

weighted fat-suppressed MR image shows periarticular subchondral BMLs (white arrows). (C) 

Sagittal T2- weighted MR image of lumbar spine OA shows disc space narrowing at L2 to L3 

and at L5 to S1 (arrowheads). There is an additional inferiorly displaced disc herniation at L3 to 

L4 (white arrow). (D) Axial T2-weighted gradient-echo MR image at the level of L3 to L4 

shows hypertrophic facet joint OA (white arrows) and a small medial disc herniation 

(arrowhead). (E) Coronal short tau inversion recovery (STIR) MR image of the lumbar spine 

demonstrates peridiscal edema-like lesions at L2 to L3 and at L4 to L5 (arrows). Note the 

peridiscal lateral osteophytes (arrowheads). (F) Sagittal T1-weighted MR image of advanced 

shoulder OA shows large humeral osteophytes (arrowheads) and severe JSN and cartilage loss 

(arrow).
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Figure 3. Examples of 1.0 T and 3.0 T MR imaging of knee OA. (A) Sagittal proton density-

weighted fat-suppressed 1.0 T MR image shows a subchondral BML in the anterior medial 

femur (arrowheads) associated with superficial cartilage damage. (B) Sagittal proton density-

weighted fat-suppressed 3.0 T MR image shows a subchondral BML in the  anterior lateral 

femur (arrowhead) and femoral and tibial subchondral cysts (arrows).  
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Figure 4. Synovial activation in knee OA. (A) Sagittal proton density-weighted fat-suppressed 

MR image shows joint effusion depicted as fluid-equivalent signal in the articular cavity (black 

arrowheads). (B) Sagittal T1-weighted fat-suppressed contrast-enhanced MR image of the same 

knee shows joint effusion depicted as hypointense signal within the articular cavity (white 

arrowheads). Supra- and infrapatellar synovial thickening is visualized (white arrows). Note that 

the true extent of synovial thickening can only be appreciated on T1-weighted contrast-enhanced 

MR images. 
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Figure 5. Longitudinal semiquantitative assessment of knee OA. (A) Baseline coronal double 

echo steady state (DESS) MR image shows central osteophytes scored for the medial and lateral 

compartments (arrowheads). Subchondral BMLs are shown (arrows). (B) MR image at 12 month 

follow-up shows increasing cartilage loss in the medial compartment but a decrease of the 

periarticular BMLs (arrow). The size of the osteophytes has not changed. (C) Sagittal proton 

density-weighted fat-suppressed MR image demonstrates a large BML in the central weight-

bearing part of the medial femur (arrowheads). (D) MR image at 12 month follow-up shows a 

decrease in the size and signal intensity of the BML (arrows). Note that the BML is better 

depicted on the spin-echo images (C, D) than on the gradient-echo images (A, B). 
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Figure 6. Development of cartilage damage in early osteoarthritis. A. Sagittal intermediate-

weighted fat-saturated image shows regular articular chondral surface without focal or diffuse 

cartilage damage. B. 12 month follow-up image of the same knee at the identical section shows 

early intrachondral degeneration reflected as hyperintensity within the central weight bearing 

region of the tibial cartilage but not altering the articular surface (arrow). C. 24 month 

examination depicts focal full thickness cartilage defect reaching the subchondral plateau at the 

same location (arrowhead). In addition there is incident superficial cartilage damage at the 

central part of the lateral femoral condyle adjacent to the posterior horn of the lateral meniscus. 

D. 36 month follow-up image shows progression to wide spread full thickness cartilage loss in 

the central weight bearing part of the lateral tibia (arrowheads). In addition there is incident full 

thickness damage at the posterior aspect of the lateral femoral condyle (thin arrows). Note 

adjacent BML, which often accompany cartilage damage. 
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Figure 7. Progression of meniscal damage over time. A. Sagittal intermediate-weighted fat-

saturated image shows intrameniscal high signal representing mucoid degeneration (arrow) in the 

posterior horn of the medial meniscus that does not reach the meniscal surface. No tear is seen 

and there is no signal change in the anterior horn. B. 12 month follow-up examination depicts 

development of the horizontal-oblique tear in the posterior horn. Meniscal hyperintensity now 

reaches the meniscal undersurface (arrowhead). In addition there is incident mucoid degeneration 

in the anterior horn (arrow). C. At 36 month follow-up an incident horizontal tear in the anterior 

horn is seen. In addition meniscal cysts communicating with horizontal tears of the anterior horn 

(arrowhead) and posterior horn (thick arrow) are visible. Note the subchondral BML adjacent to 

the full thickness cartilage damage in the posterior aspect of the lateral tibial plateau. (thin arrow). 
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Figure 8. Knee MR image obtained with spoiled gradient-echo (SPGR) sequences with water 

excitation, in the same person: (A) sagittal image; (B) axial image; (C) coronal image; (D) same 

coronal image with the medial tibial cartilage marked (segmented) blue, medial femoral cartilage 

marked yellow, lateral tibial cartilage marked green, and lateral femoral cartilage marked red. 
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Figure 9. (A, B) 3D reconstruction and visualization of knee cartilage plates from a sagittal MR 

imaging data set: medial tibial cartilage marked blue, medial femoral cartilage marked yellow, 

lateral tibial cartilage marked green, lateral femoral cartilage marked red, femoral trochlear 

cartilage marked turquoise, and patellar cartilage marked magenta. 
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Figure 10. Case study of dGEMRIC as a function of time before and after PCL injury. A decline 

in the dGEMRIC Index is apparent at one month, with a further decrease at three months and 

recovery at six months. These data illustrate the potential for biochemical monitoring of cartilage 

to demonstrate degeneration and recovery of the tissue from a traumatic injury. Similar studies 

might be used to monitor cartilage status improvement with other mechanical, surgical, or 

pharmaceutical interventions. (From Young AA, Stanwell P, Williams A, et al. 

Glycosaminoglycan content of knee cartilage following posterior cruciate ligament rupture 

demonstrated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage 

(dGEMRIC). A case report. J Bone Joint Surg Am 2005;87:2765; with permission.) 
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Figure 11. (A) T2 map of patellar cartilage shows variation with cartilage depth. (From Maier 

CF, Tan SG, Hariharan H, et al. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson 

Imaging 2003;17:363; with permission.) (B) T1 rho map of patellar cartilage demonstrates a 

lesion in cartilage that is morphologically thick and intact. (From Borthakur A, Mellon E, Niyogi 

S, et al. Sodium and T1 rho MRI for molecular and diagnostic imaging of articular cartilage. 

NMR Biomed 2006;19:799; with permission.) The variation and lesions apparent in maps of 

these parameters across morphologically intact cartilage enable monitoring of biochemical 

changes in cartilage before morphologic changes become apparent. 
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Figure12. OA of the knee. Coronal ultrasound scans through the distal femur of a normal knee 

(A) and an osteoarthritic knee (B) demonstrate the intracondylar notch. The red arrows indicate 

the cortical surface of the femur, and the yellow arrows indicate the superficial surface of the 

cartilage. Note that compared with the normal knee, the cartilage in the osteoarthritic knee is 

more echoic, there is loss of definition of the margins, and it appears thinner laterally. 
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Figure 13. OA of the proximal interphalangeal (PIP) joint. (A) Dorsal longitudinal ultrasound 

image of a normal PIP joint, with smooth cortical outlines. (B) Dorsal longitudinal ultrasound 

scan of osteoarthritic PIP joint demonstrates proximal and distal dorsal osteophytes (yellow 

arrows) and synovial hypertrophy (dark area indicated by an S). Dorsal longitudinal (C) and 

transverse (D) ultrasound scans of the PIP joint shown in B, with power Doppler function added, 

demonstrate Doppler signal within the hypoechoic synovial hypertrophy. PP, proximal phalanx; 

MP, middle phalanx. 



 54 

 
 

Figure 14. OA in the knee. A longitudinal ultrasound image through the suprapatellar pouch 

demonstrates synovial hypertrophy with villi formation (yellow arrows) and an effusion (E). The 

cortical surface of the femur (F) and patella (P) are indicated by the red arrows, and the 

quadriceps tendon (QT) is also shown.
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Figure 15. Scintigraphy. (A) Radionuclide accumulation is observed in the medial compartment 

of the left knee (black arrows) in a patient who has prostate cancer and a high risk for bone 

metastases. This appearance is nonspecific and more likely secondary to degenerative disease. 

(B) Coronal T2-weighted fat-suppressed MR image of the same knee shows meniscal 

degeneration (white arrows) and cartilage damage (arrowhead). The image confirms normal bone 

marrow without metastatic deposits. (Image courtesy of G. Mercier, MD, PhD, Boston, MA. 

Reproduced from Guermazi et al. Rheum Dis Clin North Am 2008; 645-687.) 
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Figure 16. FDG-PET of the cervical spine in a patient who has breast cancer. (A) Axial view 

FDG-PET shows inflammatory facet joint of the cervical spine OA with strong glucose 

accumulation around the left facet joint. Note the low spatial resolution of PET. (B) Axial CT 

shows hypertrophic left-sided facet joint and confirms the osteoarthritic nature of the lesion. (C) 

Fused PET-CT image superiorly demonstrates the correlation between metabolic changes 

depicted by PET and spatial localization by CT. (D) Coronal view FDG-PET in the same patients 

shows bilateral facet joint OA at L4 to L5 and L5 to S1 (arrows). (Image courtesy of G. Mercier, 
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MD, PhD, Boston, MA. Reproduced from Guermazi et al. Rheum Dis Clin North Am 2008; 645-

687.) 

 
 

Figure 17. Correlation of CT arthrography and MR imaging. (A) Sagittal reformatted CT 

arthrography of the medial knee compartment shows posterior horn meniscal tear (arrow). Note 

superficial cartilage thinning at the femoral condyle adjacent to the meniscus. (B) Sagittal proton 

density-weighted MR image of the same knee demonstrates the posterior horn meniscal tear 

(arrow). (C) Coronal reformatted CT arthrography of the medial compartment shows focal 

cartilage defect in the central femoral condyle (arrow). (D) Coronal fat-suppressed T2-weighted 

MR image shows the same defect (arrow). (Image courtesy of B. Van de Berg, MD, PhD, 

Brussels, Belgium. Reproduced from Guermazi et al. Rheum Dis Clin North Am 2008; 645-

687.) 
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Table 1. Comparison of MR imaging features scored by the four semiquantitative MR 
imaging scoring systems 
 
MRI features BLOKS WORMS MOAKS KOSS 
Cartilage Uses two scores. 

Score 1: subregional 
approach 
A. % of any cartilage 
loss in subregion 
B. % of full-thickness 
cartilage loss in 
subregion 
Score2: site-specific 
approach. Scoring of 
cartilage thickness at 11 
specific locations (not 
subregions) from 0 
(none) to 2 (full 
thickness loss) 

Subregional approach: 
scored from 0 to 6 
depending on depth and 
extent of cartilage loss. 
Intrachondral cartilage 
signal is scored as 
present or absent. 

Subregional 
approach: each 
articular cartilage 
region is graded 0 
to 3 for size of any 
cartilage loss as 
a % of surface area 
of each individual 
region surface, 
and % in this 
subregion that is 
full-thickness loss. 

Subregional 
approach: focal and 
diffuse defects are 
differentiated. Depth 
of lesions is scored 
from 0 to 3.  
Diameter of lesions is 
scored from 0 to 3. 
Osteochondral 
defects are scored 
separately. 

Bone marrow 
lesions 

Scoring of individual 
lesions - 
3 different aspects of 
BMLs are scored: 
A. Size of BML scored 
from 0 to 3 
concerning % of 
subregional bone 
volume 
B. % of surface area 
adjacent to subchondral 
plate 
C. % of BML that is 
non-cystic 

Summed BML 
size/volume for 
subregion from 0 to 3 
based on % of 
subregional bone 
volume 

Summed BML 
size/volume for 
subregion from 0 to 
3 based on % of 
subregional bone 
volume. 
Number of BMLs 
counted. 
% of the volume of 
each BML that is 
non-cystic is graded 
from 0 to 3  

Scoring of individual 
lesions from 0 to 3 
based on maximum 
diameter of lesion 

Subchondral 
cysts 

Scored together with 
BMLs 

Summed cyst 
size/volume for 
subregion from 0 to 3 
in regard to % of 
subregional bone 
volume 

Scored together 
with BMLs 

Scoring of individual 
lesions from 0 to 3 
based on maximum 
diameter of lesion 

Osteophytes Scored from 0 to 3 at 12 
sites  

Scored from 0 to 7 at 
16 sites  

Same as BLOKS: 
Scored from 0 to 3 
at 12 sites 

Scored from 0 to 3 
Marginal 
intercondylar and 
central osteophytes 
are differentiated  
Locations/sites of 
osteophytes scoring 
not included 

Bone attrition Not scored Scored from 0 to 3 in 
14 subregions  

Not scored Not scored 

Effusion  Scored from 0 to 3 Scored from 0 to 3 Scored from 0 to 3 
(termed effusion-
synovitis) 

Scored from 0 to 3 

Synovitis  A. scoring of size of Combined Scored from 0 to 3 Synovial thickening 
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signal changes in 
Hoffa’s fat pad 
B. Five additional sites 
scored as present or 
absent 

effusion/synovitis score (called Hoffa-
synovitis) 

scored as present or 
absent 

Meniscal 
status 

Intrasubstance signal 
changes in anterior 
horn, body, posterior 
horn scored separately 
in medial/lateral 
meniscus  
Presence/absence 
scored for the 
following: 
- intrameniscal signal, 
vertical tear, horizontal 
tear, complex tear, root 
tear, maceration, 
meniscal cyst 

Anterior horn, body, 
posterior horn scored 
separately in 
medial/lateral meniscus 
from 0 to 4: 
1. minor radial or 
parrot-beak tear 
2. non displaced tear or 
prior surgical repair 
3. displaced tear or 
partial resection 
4. complete maceration 
or destruction or 
complete resection 

Same as BLOKS, 
plus additional 
scoring for 
meniscal 
hypertrophy, partial 
maceration and 
progressive partial 
maceration. 

No subregional 
division of meniscus 
described. Presence 
or absence of tears: 
- horizontal tear, 
vertical tear, radial 
tear, complex tear, 
bucket-handle tear,  
Meniscal 
intrasubstance 
degeneration scored 
from 0 to 3 

Meniscal 
extrusion 

Scored as medial and 
lateral extrusion on 
coronal image, and 
anterior extrusion for 
medial or lateral 
meniscus on sagittal 
image from 0 to 3 

Not scored Same as BLOKS Scored on coronal 
image from 0 to 3 

Ligaments Cruciate ligaments 
scored as normal or 
complete tear 
Associated insertional 
BMLs are scored in 
tibia and in femur 
Collateral ligaments not 
scored 

Cruciate ligaments and 
collateral ligaments 
scored as intact or torn 

Same as BLOKS Not scored 

Periarticular 
features 

Features are scored as 
present or absent: 
- patellar tendon signal, 
pes anserine bursitis, 
iliotibial band signal, 
popliteal cyst, 
infrapatellar bursa, 
prepatellar bursa, 
ganglion cysts of the 
tibiofibular joint, 
meniscus, ACL and 
PCL, 
semimembranosus, 
semitendinosus, other 

Popliteal cysts, 
anserine bursitis, 
semimembranosus 
bursa, meniscal cyst, 
infrapatellar bursitis, 
prepatellar bursitis, 
tibiofibular cyst scored 
from 0 to 3 

Same as BLOKS Popliteal cysts only, 
scored from 0 to 3 

Loose bodies Scored as present or 
absent 

Scored from 0 to 3 
depending on number 
of loose bodies 

Same as BLOKS Not scored 
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Table 2. Comparison of technical aspects of each scoring system and their reliabilities 

 BLOKS WORMS MOAKS KOSS 

MR imaging 
system used 

1.5T system 1.5T system 3T system 1.5T system 

MR imaging 
protocol of 
original 
publication 

For reliability 
exercise (10 
knees): 
sagittal/coronal 
T2-weighted fat-
suppressed, 
sagittal T1-
weighted spin-
echo, 
axial/coronal 3D 
FLASH 
For validity of 
BML assessment 
(71 knees): 
sagittal proton 
density-weighted 
/T2-weighted, 
axial/coronal 
proton density-
weighted /T2-
weighted fat-
suppressed 

Axial T1-weighted spin-
echo, coronal T1-weighted 
spin-echo, sagittal T1-
weighted spin-echo, 
sagittal T2-weighted fat-
suppressed, sagittal 3D 
SPGR 

Coronal intermediate-
weighted 2D turbo spin-
echo, sagittal 3D DESS with 
axial/coronal reformation, 
sagittal intermediate-
weighted fat-suppressed fast 
spin-echo 

Coronal/sagittal T2-
weighted and proton 
density-weighted, 
sagittal 3D SPGR, 
axial proton 
density-weighted 
and axial T2-
weighted fat-
suppressed 

-Subregional 
division of 
knee 

9 subregions: 
medial/lateral 
patella, 
medial/lateral 
trochlea, 
medial/lateral 
weight-bearing 
femur, 
medial/lateral 
weight-bearing 
tibia, subspinous 
tibia 

15 subregions: 
medial/lateral patella, 
medial/lateral femur 
(anterior/central/posterior), 
medial/lateral tibia 
(anterior/central/posterior), 
subspinous tibia 

15 subregions: medial/lateral 
patella, medial/lateral femur 
(trochlea/central/posterior), 
medial/lateral tibia 
(anterior/central/posterior), 
subspinous tibia 

9 subregions: 
medial patella, 
patellar crest, lateral 
patella, 
medial/lateral 
trochlea, 
medial/lateral 
femoral condyle, 
medial/lateral tibial 
plateau 

Inter-reader 
reliability 

Based on 10 
knees 
weighted-kappa 
between 0.51 
(meniscal 
extrusion) and 
0.79 (meniscal 
tear) 

Based on 19 knees 
ICC between 0.74 (bone 
marrow abnormalities and 
synovitis/effusion) and 
0.99 (cartilage) 

Based on 20 knees 
weighted -kappa between 
0.36 (tibial cartilage area) 
and 1.00 (patellar BML % 
cyst) 
% agreement between 55% 
(tibial osteophytes) and 
100% (patellar BML % cyst) 

Based on 25 knees 
weighted -kappa 
between 0.57 
(osteochondral 
defects) and 0.88 
(bone marrow 
edema) 

Intra-reader 
reliability 

Not presented Not presented Based on 20 knees 
weighted -kappa between 
0.42 (Hoffa synovitis) and 
1.00 (patellar BML size and 

Based on 25 knees 
weighted -kappa 
between 0.56 
(intrasubstance 
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medial meniscal 
morphology)  
% agreement between 55% 
(Hoffa synovitis) and 100% 
(patellar BML size and 
medial meniscal 
morphology) 

meniscal 
degeneration) and 
0.91 (bone marrow 
edema and Baker 
cyst) 

FLASH=fast low angle shot; DESS=dual echo steady state; SPGR=spoiled gradient echo. 
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Table 3. Summary of contrast-enhanced MR imaging-based semiquantitative scoring systems for 
synovitis in knee osteoarthritis 

 
Publication Rhodes et al Modified Rhodes et al (used in 

Baker et al) 
Guermazi et al 

MRI system 
used 

1.5T 1.5T 1.5T 

Number of 
knees 

35 454 400 

MRI sequence  Axial T1-weighted fat-
suppressed post contrast 

Axial/sagittal T1-weighted fat-
suppressed post contrast 

Axial/sagittal T1-weighted fat-
suppressed 

Sites of 
synovitis 
evaluation 

4 sites:  

Medial and lateral patellar 
recess, intercondylar notch 
and suprapatellar pouch 
(graded 0-3) 

6 sites: 

Medial and lateral parapatellar 
recess, suprapatellar pouch and 
infrapatellar fat pad (graded 0-
3)  

Medial & lateral posterior 
condyle (scored 0 or 1) 

11 sites: 

Medial and lateral parapatellar 
recess, suprapatellar, 
infrapatellar, intercondylar, 
medial and lateral perimeniscal, 
and adjacent to anterior and 
posterior cruciate ligaments, 
adjacent to loose bodies, within 
Baker's cyst 

Contrast 
administration 

Gd-DTPA 0.2ml 
(0.1mmol)/kg body weight  

Post-contrast image 
acquired 4.5 minutes after 
injection 

Gd-DTPA 0.2ml (0.1mmol)/kg 
body weight  

Post contrast axial image 
acquired 2 minutes after 
injection, immediately 
followed by sagittal image 

Gd-DTPA 0.2ml (0.1mmol)/kg 
body weight  

Post contrast axial image 
acquired 2 minutes after 
injection, immediately followed 
by sagittal image 

Grades 0=normal; 1=diffuse even 
thickening; 2=nodular 
thickening; 3=gross nodular 
thickening 

0=normal; 1=diffuse even 
thickening; 2=nodular 
thickening; 3=gross nodular 
thickening 

0=maximal synovial thickness < 
2mm; 1=2-4mm; 2=greater than 
4mm 

Analysis 
approach 

Synovitis assessed at each 
site only 

Synovitis categories: 1. normal 
or questionable (<4 sites scored 
as 1 and all other sites scored 
as 0); 2. some (≥4 sites scored 
as 1 and/or ≤1 site scored as 2); 
3. a lot (≥2 sites scored as 2 
and no score of 3); 4. extensive 
(≥1 site scored as 3) 

Whole-knee synovitis scores of 
11 sites were summed and 
categorized: 

0-4=normal or equivocal; 5-
8=mild synovitis; 9-
12=moderate synovitis; 13 or 
above=severe synovitis 

Reliability Not reported Inter-reader: weighted-kappa 
0.80   

Intra-reader: weighted-kappa 
0.58  

For each site:  

Inter-reader, weighted -kappa 
0.67-0.92; Intra-reader, weighted 
-kappa 0.67-1.00 (rater 1), 0.60-
1.00 (rater 2) 

For summed score: Inter-reader, 
ICC 0.94; Intra-reader, 0.98 
(reader 1), 0.96 (reader 2) 

Gd=gadolinium; DTPA=diethylene triamine pentaacetic acid. 
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