9,780 research outputs found

    Numerical residual perturbation solutions applied to the problem of a close satellite of the smaller body in the restricted three-body problem

    Get PDF
    Numerical residual perturbation solution for prediction of satellite position in restricted three-body proble

    The Moyal Sphere

    Full text link
    We construct a family of constant curvature metrics on the Moyal plane and compute the Gauss-Bonnet term for each of them. They arise from the conformal rescaling of the metric in the orthonormal frame approach. We find a particular solution, which corresponds to the Fubini-Study metric and which equips the Moyal algebra with the geometry of a noncommutative sphere.Comment: 16 pages, 3 figure

    Crossover from adiabatic to sudden interaction quenches in the Hubbard model: Prethermalization and nonequilibrium dynamics

    Full text link
    The recent experimental implementation of condensed matter models in optical lattices has motivated research on their nonequilibrium behavior. Predictions on the dynamics of superconductors following a sudden quench of the pairing interaction have been made based on the effective BCS Hamiltonian; however, their experimental verification requires the preparation of a suitable excited state of the Hubbard model along a twofold constraint: (i) a sufficiently nonadiabatic ramping scheme is essential to excite the nonequilibrium dynamics, and (ii) overheating beyond the critical temperature of superconductivity must be avoided. For commonly discussed interaction ramps there is no clear separation of the corresponding energy scales. Here we show that the matching of both conditions is simplified by the intrinsic relaxation behavior of ultracold fermionic systems: For the particular example of a linear ramp we examine the transient regime of prethermalization [M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)] under the crossover from sudden to adiabatic switching using Keldysh perturbation theory. A real-time analysis of the momentum distribution exhibits a temporal separation of an early energy relaxation and its later thermalization by scattering events. For long but finite ramping times this separation can be large. In the prethermalization regime the momentum distribution resembles a zero temperature Fermi liquid as the energy inserted by the ramp remains located in high energy modes. Thus ultracold fermions prove robust to heating which simplifies the observation of nonequilibrium BCS dynamics in optical lattices.Comment: 27 pages, 8 figures Second version with small modifications in section

    From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides

    Full text link
    Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance single-mode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of single-photon frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary \chitwo-based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure

    Transmission Electron Study of Heteroepitaxial Growth in the BiSrCaCuO System

    Full text link
    Films of Bi2\rm _2Sr2\rm _2CaCu2\rm _2O8\rm _8 and Bi2\rm _2Sr2\rm _2CuO6\rm _6 have been grown using Atomic-Layer-by-Layer Molecular Beam Epitaxy (ALL-MBE) on lattice-matched substrates. These materials have been combined with layers of closely-related metastable compounds like Bi2\rm _2Sr2\rm _2Ca7\rm _7Cu8\rm _8O20\rm _{20} (2278) and rare-earth-doped compounds like Bi2\rm _2Sr2\rm _2Dyx\rm _xCa1x\rm _{1-x}Cu2\rm _2O8\rm _8 (Dy:2212) to form heterostructures with unique superconducting properties, including superconductor/insulator multilayers and tunnel junctions. Transmission electron microscopy (TEM) has been used to study the morphology and microstructure of these heterostructures. These TEM studies shed light on the physical properties of the films, and give insight into the growth mode of highly anisotropic solids like Bi2\rm _2Sr2\rm _2CaCu2\rm _2O8\rm _8.Comment: 17 pages, submitted to J. Materials Research. Email to [email protected] if you want to receive copies of the figure

    Broken particle-hole symmetry at atomically flat a-axis YBa2Cu3O7-d interfaces

    Full text link
    We have studied quasiparticle tunneling into atomically flat a-axis films of YBa2Cu3O7-d and DyBa2Cu3O7-d through epitaxial CaTiO3 barriers. The junction heterostructures were grown by oxide molecular beam epitaxy and were carefully optimized using in-situ monitoring techniques, resulting in unprecedented crystalline perfection of the superconductor/insulator interface. Below Tc, the tunneling conductance shows the evolution of a large unexpected asymmetrical feature near zero bias. This is evidence that superconducting YBCO crystals, atomically truncated along the lobe direction with a titanate layer, have intrinsically broken particle-hole symmetry over macroscopically large areas.Comment: 15 pages, 4 figures; v2 includes minor changes in concluding paragraph to match PRL versio

    The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation

    Get PDF
    We review the recently proposed extension of the Gutzwiller approximation, M. Schiro' and M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010), designed to describe the out-of-equilibrium time-evolution of a Gutzwiller-type variational wave function for correlated electrons. The method, which is strictly variational in the limit of infinite lattice-coordination, is quite general and flexible, and it is applicable to generic non-equilibrium conditions, even far beyond the linear response regime. As an application, we discuss the quench dynamics of a single-band Hubbard model at half-filling, where the method predicts a dynamical phase transition above a critical quench that resembles the sharp crossover observed by time-dependent dynamical mean field theory. We next show that one can actually define in some cases a multi-configurational wave function combination of a whole set of mutually orthogonal Gutzwiller wave functions. The Hamiltonian projected in that subspace can be exactly evaluated and is equivalent to a model of auxiliary spins coupled to non-interacting electrons, closely related to the slave-spin theories for correlated electron models. The Gutzwiller approximation turns out to be nothing but the mean-field approximation applied to that spin-fermion model, which displays, for any number of bands and integer fillings, a spontaneous Z2Z_2 symmetry breaking that can be identified as the Mott insulator-to-metal transition.Comment: 25 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for thermoelectric applications: theory and experiment

    Magnetically asymmetric interfaces in a (LaMnO3_3)/(SrMnO3_3) superlattice due to structural asymmetries

    Full text link
    Polarized neutron reflectivity measurements of a ferromagnetic [(LaMnO3_3)11.8_{11.8}/(SrMnO3_3)4.4_{4.4}]6_6 superlattice reveal a modulated magnetic structure with an enhanced magnetization at the interfaces where LaMnO3_3 was deposited on SrMnO3_3 (LMO/SMO). However, the opposite interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The magnetic asymmetry arises from the difference in lateral structural roughness of the two interfaces observed via electron microscopy, with strong ferromagnetism present at the interfaces that are atomically smooth over tens of nanometers. This result demonstrates that atomic-scale roughness can destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.
    corecore