2,855 research outputs found
Asymmetry of temporal cross-correlations in turbulent shear flows
We investigate spatial and temporal cross-correlations between streamwise and
normal velocity components in three shear flows: a low-dimensional model for
vortex-streak interactions, direct numerical simulations for a nearly
homogeneous shear flow and experimental data for a turbulent boundary layer. A
driving of streamwise streaks by streamwise vortices gives rise to a temporal
asymmetry in the short time correlation. Close to the wall or the bounding
surface in the free-slip situations, this asymmetry is identified. Further away
from the boundaries the asymmetry becomes weaker and changes character,
indicating the prevalence of other processes. The systematic variation of the
asymmetry measure may be used as a complementary indicator to separate
different layers in turbulent shear flows. The location of the extrema at
different streamwise displacements can be used to read off the mean advection
speed; it differs from the mean streamwise velocity because of asymmetries in
the normal extension of the structures.Comment: 10 pages, 7 Postscript figures (low quality due to downsizing
Double ionization of a three-electron atom: Spin correlation effects
We study the effects of spin degrees of freedom and wave function symmetries
on double ionization in three-electron systems. Each electron is assigned one
spatial degree of freedom. The resulting three-dimensional Schr\"odinger
equation is integrated numerically using grid-based Fourier transforms. We
reveal three-electron effects on the double ionization yield by comparing
signals for different ionization channels. We explain our findings by the
existence of fundamental differences between three-electronic and truly
two-electronic spin-resolved ionization schemes. We find, for instance, that
double ionization from a three-electron system is dominated by electrons that
have the opposite spin
Comparison with excavated and metal-detected finds in the wider region
When Roman objects are discovered in rivers they are commonly interpreted as accidental losses or as rubbish deposits revealed by fluvial erosion; this is in contrast to prehistoric assemblages, which are often seen as ritual offerings
High-temperature liquid-mercury cathodes for ion thrusters Quarterly progress report, 1 Dec. 1966 - 28 Feb. 1967
High temperature liquid mercury cathodes for ion thrusters - thermal design analysi
Assignment of the lattice modes in TCNQ0 single crystals
A complete assignment of the six librational modes of the TCNQ0 crystal has been made employing both polarized Raman spectroscopic measurements and lattice dynamical calculations. Agreement between theory and experiment is good and modes at 40.5, 74.5, and 96 cm-1 are assigned as Ag active and those at 63, 75.5, and 104 cm-1 are Bg active. The lattice modes are found to be clearly separated from the molecular modes. The study emphasizes the importance of crystal optics and quality in the measurement of the polarized Raman spectra of biaxial crystals. The Journal of Chemical Physics is copyrighted by The American Institute of Physics
Restricted space ab initio models for double ionization by strong laser pulses
Double electron ionisation process occurs when an intense laser pulse
interacts with atoms or molecules. Exact {\it ab initio} numerical simulation
of such a situation is extremely computer resources demanding, thus often one
is forced to apply reduced dimensionality models to get insight into the
physics of the process. The performance of several algorithms for simulating
double electron ionization by strong femtosecond laser pulses are studied. The
obtained ionization yields and the momentum distributions of the released
electrons are compared, and the effects of the model dimensionality on the
ionization dynamics discussed
Statistical analysis of coherent structures in transitional pipe flow
Numerical and experimental studies of transitional pipe flow have shown the
prevalence of coherent flow structures that are dominated by downstream
vortices. They attract special attention because they contribute predominantly
to the increase of the Reynolds stresses in turbulent flow. In the present
study we introduce a convenient detector for these coherent states, calculate
the fraction of time the structures appear in the flow, and present a Markov
model for the transition between the structures. The fraction of states that
show vortical structures exceeds 24% for a Reynolds number of about Re=2200,
and it decreases to about 20% for Re=2500. The Markov model for the transition
between these states is in good agreement with the observed fraction of states,
and in reasonable agreement with the prediction for their persistence. It
provides insight into dominant qualitative changes of the flow when increasing
the Reynolds number.Comment: 11 pages, 26 (sub)figure
- …