1,703 research outputs found

    Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)

    Get PDF
    Coastal zones are important source regions for a variety of trace gases, including halocarbons and sulfur-bearing species. While salt marshes, macroalgae and phyto-plankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for highly time-resolved measurements. The fluxes of CO2, methane (CH4) and a range of volatile organic compounds (VOCs) showed a complex dynamic mediated by tide and light. In contrast to most previous studies, our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occurred with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.German Federal Ministry of Education and Research (BMBF) [03F0611E, 03F0662E]; EU FP7 ASSEMBLE research infrastructure initiative

    Lagrangian tracers on a surface flow: the role of time correlations

    Full text link
    Finite time correlations of the velocity in a surface flow are found to be important for the formation of clusters of Lagrangian tracers. The degree of clustering characterized by the Lyapunov spectrum of the flow is numerically shown to be in qualitative agreement with the predictions for the white-in-time compressible Kraichnan flow, but to deviate quantitatively. For intermediate values of compressibility the clustering is surprisingly weakened by time correlations.Comment: 4 pages, 5 figures, to be published in PR

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities

    Statistical analysis of coherent structures in transitional pipe flow

    Get PDF
    Numerical and experimental studies of transitional pipe flow have shown the prevalence of coherent flow structures that are dominated by downstream vortices. They attract special attention because they contribute predominantly to the increase of the Reynolds stresses in turbulent flow. In the present study we introduce a convenient detector for these coherent states, calculate the fraction of time the structures appear in the flow, and present a Markov model for the transition between the structures. The fraction of states that show vortical structures exceeds 24% for a Reynolds number of about Re=2200, and it decreases to about 20% for Re=2500. The Markov model for the transition between these states is in good agreement with the observed fraction of states, and in reasonable agreement with the prediction for their persistence. It provides insight into dominant qualitative changes of the flow when increasing the Reynolds number.Comment: 11 pages, 26 (sub)figure

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let

    A halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition

    Get PDF
    In this study we report fluxes of chloromethane (CH3Cl), bromomethane (CH3Br), iodomethane (CH3I), and bromoform (CHBr3) from two sampling campaigns (summer and spring) in the seagrass dominated subtropical lagoon Ria Formosa, Portugal. Dynamic flux chamber measurements were performed when seagrass patches were either air-exposed or submerged. Overall, we observed highly variable fluxes from the seagrass meadows and attributed them to diurnal cycles, tidal effects, and the variety of possible sources and sinks in the seagrass meadows. The highest emissions with up to 130 nmol m−2 h−1 for CH3Br were observed during tidal changes, from air exposure to submergence and conversely. Furthermore, during the spring campaign, the emissions of halocarbons were significantly elevated during tidal inundation as compared to air exposure. Accompanying water sampling performed during both campaigns revealed elevated concentrations of CH3Cl and CH3Br, indicating productive sources within the lagoon. Stable carbon isotopes of halocarbons from the air and water phase along with source signatures were used to allocate the distinctive sources and sinks in the lagoon. Results suggest that CH3Cl was rather originating from seagrass meadows and water column than from salt marshes. Aqueous and atmospheric CH3Br was substantially enriched in 13C in comparison to source signatures for seagrass meadows and salt marshes. This suggests a significant contribution from the water phase on the atmospheric CH3Br in the lagoon. A rough global upscaling yields annual productions from seagrass meadows of 2.3–4.5 Gg yr−1, 0.5–1.0 Gg yr−1, 0.6–1.2 Gg yr−1, and 1.9–3.7 Gg yr−1 for CH3Cl, CH3Br, CH3I, and CHBr3 respectively. This suggests a minor contribution from seagrass meadows to the global production of CH3Cl and CH3Br with about 0.1 and 0.7%, respectively. In comparison to the known marine sources for CH3I and CHBr3, seagrass meadows are rather small sources
    • 

    corecore