2,259 research outputs found

    Echoes in classical dynamical systems

    Full text link
    Echoes arise when external manipulations to a system induce a reversal of its time evolution that leads to a more or less perfect recovery of the initial state. We discuss the accuracy with which a cloud of trajectories returns to the initial state in classical dynamical systems that are exposed to additive noise and small differences in the equations of motion for forward and backward evolution. The cases of integrable and chaotic motion and small or large noise are studied in some detail and many different dynamical laws are identified. Experimental tests in 2-d flows that show chaotic advection are proposed.Comment: to be published in J. Phys.

    Shear-flow transition: the basin boundary

    Full text link
    The structure of the basin of attraction of a stable equilibrium point is investigated for a dynamical system (W97) often used to model transition to turbulence in shear flows. The basin boundary contains not only an equilibrium point Xlb but also a periodic orbit P, and it is the latter that mediates the transition. Orbits starting near Xlb relaminarize. We offer evidence that this is due to the extreme narrowness of the region complementary to basin of attraction in that part of phase space near Xlb. This leads to a proposal for interpreting the 'edge of chaos' in terms of more familiar invariant sets.Comment: 11 pages; submitted for publication in Nonlinearit

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities

    Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)

    Get PDF
    Coastal zones are important source regions for a variety of trace gases, including halocarbons and sulfur-bearing species. While salt marshes, macroalgae and phyto-plankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for highly time-resolved measurements. The fluxes of CO2, methane (CH4) and a range of volatile organic compounds (VOCs) showed a complex dynamic mediated by tide and light. In contrast to most previous studies, our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occurred with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.German Federal Ministry of Education and Research (BMBF) [03F0611E, 03F0662E]; EU FP7 ASSEMBLE research infrastructure initiative

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure

    How does flow in a pipe become turbulent?

    Full text link
    The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by three-dimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We will also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.Comment: for the proceedings of statphys 2

    Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic

    Get PDF
    The properties of low-level liquid clouds in the Arctic can be altered by long-range pollution transport to the region. Satellite, tracer transport model, and meteorological data sets are used here to determine a net aerosol–cloud interaction (ACI<sup>net</sup>) parameter that expresses the ratio of relative changes in cloud microphysical properties to relative variations in pollution concentrations while accounting for dry or wet scavenging of aerosols en route to the Arctic. For a period between 2008 and 2010, ACI<sup>net</sup> is calculated as a function of the cloud liquid water path, temperature, altitude, specific humidity, and lower tropospheric stability. For all data, ACI<sup>net</sup> averages 0.12 ± 0.02 for cloud-droplet effective radius and 0.16 ± 0.02 for cloud optical depth. It increases with specific humidity and lower tropospheric stability and is highest when pollution concentrations are low. Carefully controlling for meteorological conditions we find that the liquid water path of arctic clouds does not respond strongly to aerosols within pollution plumes. Or, not stratifying the data according to meteorological state can lead to artificially exaggerated calculations of the magnitude of the impacts of pollution on arctic clouds

    A Trace Formula for Products of Diagonal Matrix Elements in Chaotic Systems

    Full text link
    We derive a trace formula for ∑nAnnBnn...δ(E−En)\sum_n A_{nn}B_{nn}...\delta(E-E_n), where AnnA_{nn} is the diagonal matrix element of the operator AA in the energy basis of a chaotic system. The result takes the form of a smooth term plus periodic-orbit corrections; each orbit is weighted by the usual Gutzwiller factor times ApBp...A_p B_p ..., where ApA_p is the average of the classical observable AA along the periodic orbit pp. This structure for the orbit corrections was previously proposed by Main and Wunner (chao-dyn/9904040) on the basis of numerical evidence.Comment: 8 pages; analysis made more rigorous in the revised versio

    Travelling waves in pipe flow

    Full text link
    A family of three-dimensional travelling waves for flow through a pipe of circular cross section is identified. The travelling waves are dominated by pairs of downstream vortices and streaks. They originate in saddle-node bifurcations at Reynolds numbers as low as 1250. All states are immediately unstable. Their dynamical significance is that they provide a skeleton for the formation of a chaotic saddle that can explain the intermittent transition to turbulence and the sensitive dependence on initial conditions in this shear flow.Comment: 4 pages, 5 figure
    • …
    corecore