2,259 research outputs found
Echoes in classical dynamical systems
Echoes arise when external manipulations to a system induce a reversal of its
time evolution that leads to a more or less perfect recovery of the initial
state. We discuss the accuracy with which a cloud of trajectories returns to
the initial state in classical dynamical systems that are exposed to additive
noise and small differences in the equations of motion for forward and backward
evolution. The cases of integrable and chaotic motion and small or large noise
are studied in some detail and many different dynamical laws are identified.
Experimental tests in 2-d flows that show chaotic advection are proposed.Comment: to be published in J. Phys.
Shear-flow transition: the basin boundary
The structure of the basin of attraction of a stable equilibrium point is
investigated for a dynamical system (W97) often used to model transition to
turbulence in shear flows. The basin boundary contains not only an equilibrium
point Xlb but also a periodic orbit P, and it is the latter that mediates the
transition. Orbits starting near Xlb relaminarize. We offer evidence that this
is due to the extreme narrowness of the region complementary to basin of
attraction in that part of phase space near Xlb. This leads to a proposal for
interpreting the 'edge of chaos' in terms of more familiar invariant sets.Comment: 11 pages; submitted for publication in Nonlinearit
Anomalous power law of quantum reversibility for classically regular dynamics
The Loschmidt Echo M(t) (defined as the squared overlap of wave packets
evolving with two slightly different Hamiltonians) is a measure of quantum
reversibility. We investigate its behavior for classically quasi-integrable
systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2
depending solely on the dimension d of the system. This power law decay is
faster than the result ~ t^{-d} for the decay of classical phase space
densities
Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)
Coastal zones are important source regions for a variety of trace gases, including halocarbons and sulfur-bearing species. While salt marshes, macroalgae and phyto-plankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for highly time-resolved measurements. The fluxes of CO2, methane (CH4) and a range of volatile organic compounds (VOCs) showed a complex dynamic mediated by tide and light. In contrast to most previous studies, our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occurred with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.German Federal Ministry of Education and Research (BMBF) [03F0611E, 03F0662E]; EU FP7 ASSEMBLE research infrastructure initiative
Semiclassical cross section correlations
We calculate within a semiclassical approximation the autocorrelation
function of cross sections. The starting point is the semiclassical expression
for the diagonal matrix elements of an operator. For general operators with a
smooth classical limit the autocorrelation function of such matrix elements has
two contributions with relative weights determined by classical dynamics. We
show how the random matrix result can be obtained if the operator approaches a
projector onto a single initial state. The expressions are verified in
calculations for the kicked rotor.Comment: 6 pages, 2 figure
How does flow in a pipe become turbulent?
The transition to turbulence in pipe flow does not follow the scenario
familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile
is stable against infinitesimal perturbations for all Reynolds numbers.
Moreover, even when the flow speed is high enough and the perturbation
sufficiently strong such that turbulent flow is established, it can return to
the laminar state without any indication of the imminent decay. In this
parameter range, the lifetimes of perturbations show a sensitive dependence on
initial conditions and an exponential distribution. The turbulence seems to be
supported by three-dimensional travelling waves which appear transiently in the
flow field. The boundary between laminar and turbulent dynamics is formed by
the stable manifold of an invariant chaotic state. We will also discuss the
relation between observations in short, periodically continued domains, and the
dynamics in fully extended puffs.Comment: for the proceedings of statphys 2
Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic
The properties of low-level liquid clouds in the Arctic can be altered by
long-range pollution transport to the region. Satellite, tracer transport
model, and meteorological data sets are used here to determine a net
aerosol–cloud interaction (ACI<sup>net</sup>) parameter that expresses the
ratio of relative changes in cloud microphysical properties to relative
variations in pollution concentrations while accounting for dry or wet
scavenging of aerosols en route to the Arctic. For a period between 2008 and
2010, ACI<sup>net</sup> is calculated as a function of the cloud liquid water
path, temperature, altitude, specific humidity, and lower tropospheric
stability. For all data, ACI<sup>net</sup> averages 0.12 ± 0.02 for cloud-droplet
effective radius and 0.16 ± 0.02 for cloud optical depth. It
increases with specific humidity and lower tropospheric stability and is
highest when pollution concentrations are low. Carefully controlling for
meteorological conditions we find that the liquid water path of arctic clouds
does not respond strongly to aerosols within pollution plumes. Or, not
stratifying the data according to meteorological state can lead to
artificially exaggerated calculations of the magnitude of the impacts of
pollution on arctic clouds
A Trace Formula for Products of Diagonal Matrix Elements in Chaotic Systems
We derive a trace formula for , where
is the diagonal matrix element of the operator in the energy basis
of a chaotic system. The result takes the form of a smooth term plus
periodic-orbit corrections; each orbit is weighted by the usual Gutzwiller
factor times , where is the average of the classical
observable along the periodic orbit . This structure for the orbit
corrections was previously proposed by Main and Wunner (chao-dyn/9904040) on
the basis of numerical evidence.Comment: 8 pages; analysis made more rigorous in the revised versio
Travelling waves in pipe flow
A family of three-dimensional travelling waves for flow through a pipe of
circular cross section is identified. The travelling waves are dominated by
pairs of downstream vortices and streaks. They originate in saddle-node
bifurcations at Reynolds numbers as low as 1250. All states are immediately
unstable. Their dynamical significance is that they provide a skeleton for the
formation of a chaotic saddle that can explain the intermittent transition to
turbulence and the sensitive dependence on initial conditions in this shear
flow.Comment: 4 pages, 5 figure
- …