4,997 research outputs found
Environmental legislation as a driver of design
and other research output
Quantum polarization spectroscopy of ultracold spinor gases
We propose a method for the detection of ground state quantum phases of
spinor gases through a series of two quantum nondemolition measurements
performed by sending off-resonant, polarized light pulses through the gas.
Signatures of various mean-field as well as strongly-correlated phases of F=1
and F=2 spinor gases obtained by detecting quantum fluctuations and mean values
of polarization of transmitted light are identified.Comment: 5 pages, 1 figure; v2: minor change
Exotic magnetic orders for high spin ultracold fermions
We study Hubbard models for ultracold bosonic or fermionic atoms loaded into
an optical lattice. The atoms carry a high spin , and interact on site
via strong repulsive Van der Waals forces. Making convenient rearrangements of
the interaction terms, and exploiting their symmetry properties, we derive low
energy effective models with nearest-neighbor interactions, and their
properties. We apply our method to , and 5/2 fermions on two-dimensional
square lattice at quarter, and 1/6 fillings, respectively, and investigate
mean-field equations for repulsive couplings. We find for fermions that
the plaquette state appearing in the highly symmetric SU(4) case does not
require fine tuning, and is stable in an extended region of the phase diagram.
This phase competes with an SU(2) flux state, that is always suppressed for
repulsive interactions in absence of external magnetic field. The SU(2) flux
state has, however, lower energy than the plaquette phase, and stabilizes in
the presence of weak applied magnetic field. For fermions a similar
SU(2) plaquette phase is found to be the ground state without external magnetic
field.Comment: final version, 6 pages, 4 figures, epl forma
Reentrant glass transition in a colloid-polymer mixture with depletion attractions
Performing light scattering experiments we show that introducing short-ranged
attraction to a colloidal suspension of nearly hard spheres by addition of free
polymer produces new glass transition phenomena. We observe a dramatic
acceleration of the density fluctuations amounting to the melting of a
colloidal glass. Increasing the strength of the attractions the system freezes
into another nonergodic state sharing some qualitative features with gel states
occurring at lower colloid packing fractions. This reentrant glass transition
is in qualitative agreement with recent theoretical predictions.Comment: 14 pages, 3 figure
Autochthonous European dirofilariasis of the lung
Two intrapulmonary round nodules were identified by x-ray examination in a 45-year old German woman during an examination conducted before her employment who had been complaining of pain in the right side of the thorax and of mild coughing irritation and tiredness for several months prior to the health check. Since the intraoperative frozen section did not show any malignancy, and atypical resection of the two involved segments was performed. Histological processing of the surgical specimens showed two spherical ischemic necroses surrounded by a connective tissue border with inflammatory infiltration. In the centre of the larger of the two necrotic lesions a parasite was seen intravascularly, which because of morphological and serological findings, was identified as a Dirofilaria. It must be assumed that the infection of this patient occurred during a stay in Corsica where these nematodes are endemic in several mammal hosts. The patient was therefore suffering from an autochthonous European dirofilariasis of the lung. Only two cases of this infection acquired in Europe have been reported so far
Aerodynamic characteristics of a small-scale straight and swept-back wing with knee-blown jet flaps
Two sting-mounted, 50.8 cm (20 in.) span, knee-blown, jet-flap models were tested in a large (2.1- by 2.5-m (7- by 10-ft) subsonic wind tunnel. A straight- and swept-wing model were tested with fixed flap deflection with various combinations of full-span leading-edge slats. The swept-wing model was also tested with wing tip extensions. Data were taken at angles-of-attack between 0 deg and 40 deg, at dynamic pressures between 143.6 N/sq m (3 lb/sq ft) and 239.4 N/sq m (5 lb/sq ft), and at Reynolds numbers (based on wing chord) ranging from 100,000 to 132,000. Jet flap momentum blowing coefficients up to 10 were used. Lift, drag, and pitching-moment coefficients, and exit flow profiles for the flap blowing are presented in graphical form without analysis
Thermal Analysis of a Metallic Wing Glove for a Mach-8 Boundary-Layer Experiment
A metallic 'glove' structure has been built and attached to the wing of the Pegasus(trademark) space booster. An experiment on the upper surface of the glove has been designed to help validate boundary-layer stability codes in a free-flight environment. Three-dimensional thermal analyses have been performed to ensure that the glove structure design would be within allowable temperature limits in the experiment test section of the upper skin of the glove. Temperature results obtained from the design-case analysis show a peak temperature at the leading edge of 490 F. For the upper surface of the glove, approximately 3 in. back from the leading edge, temperature calculations indicate transition occurs at approximately 45 sec into the flight profile. A worst-case heating analysis has also been performed to ensure that the glove structure would not have any detrimental effects on the primary objective of the Pegasus a launch. A peak temperature of 805 F has been calculated on the leading edge of the glove structure. The temperatures predicted from the design case are well within the temperature limits of the glove structure, and the worst-case heating analysis temperature results are acceptable for the mission objectives
Cutaneous Silent Period Characteristics are Dependent on the Organization of Upper Limb Muscles
abstractCutaneous silent periods (CSPs) are inhibitory spinal reflexes mediated by small diameter A-δ fibers, serving to protect the body from harmful stimuli (Leis et al., 1992; Kofler, 2003). Currently, CSPs are believed to only inhibit the extensor muscles of the upper limb halting motions such as reaching, while exciting flexor muscles to withdraw the limb. The present study sought to determine if CSPs could be evoked in both extensor and flexor muscles of the upper limb, thereby providing further insight into the organization of the spinal circuitry associated with this reflex. 22 subjects performed contractions with seven muscles from the hand, forearm, upper arm, and shoulder while muscle activity was recorded with electromyography. Subjects were electrically stimulated (10x perceptual threshold) with 20 individual pulses delivered to each digit II (radial nerve) and digit V (ulnar nerve) of the right hand during each contraction. Results demonstrated significant main effects (p<0.001) across muscles for the key dependent variables of the CSP: onsets (F[6,21] = 15.42, p <0.001), durations (F[6,21] = 65.39, p <0.001), and % of suppression (F[6,21] = 91, p <0.001), similarly for both nerves stimulated. Distal muscles presented with the earliest onset times, longest duration of inhibition, and largest amount of inhibition. Moving proximally, the onset times became later with duration and the amount of inhibition decreasing. Linear regressions showed that the distance of the muscle from the spinal cord (cm) was a significant predictor of the duration (digit II r2 = 0.43; digit V r2 = 0.46) and amount of inhibition (digit II r2 = 0.51; digit V r2 = 0.48). The results demonstrate the occurrence of CSPs throughout the upper limb, with the greatest inhibition of distal muscles, leading us to hypothesize that the corticospinal tract, specifically direct cortico-motorneuronal connections, are directly influenced by the inhibitory input
Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.
We studied the annual variability of the concentration and isotopic composition of main sulfur species and sulfide oxidation intermediates in the water column of monomictic fresh-water Lake Kinneret. Sulfate concentrations in the lake are <1 mM and similar to concentrations that are proposed to have existed in the Paleoproterozoic ocean. The main goal of this research was to explore biogeochemical constrains of sulfur cycling in the modern low-sulfate fresh-water lake and to identify which processes may be responsible for the isotopic composition of sulfur species in the Precambrian sedimentary rocks. RESULTS: At the deepest point of the lake, the sulfate inventory decreases by more than 20% between March and December due to microbial sulfate reduction leading to the buildup of hydrogen sulfide. During the initial stages of stratification, sulfur isotope fractionation between sulfate and hydrogen sulfide is low (11.6 ‰) and sulfur oxyanions (e.g. thiosulfate and sulfite) are the main products of the incomplete oxidation of hydrogen sulfide. During the stratification and at the beginning of the lake mixing (July-December), the inventory of hydrogen sulfide as well as of sulfide oxidation intermediates in the water column increases and is accompanied by an increase in sulfur isotope fractionation to 30 ± 4 ‰ in October. During the period of erosion of the chemocline, zero-valent sulfur prevails over sulfur oxyanions. In the terminal period of the mixing of the water column (January), the concentration of hydrogen sulfide decreases, the inventory of sulfide oxidation intermediates increases, and sulfur isotope fractionation decreases to 20 ± 2 ‰. CONCLUSIONS: Sulfide oxidation intermediates are present in the water column of Lake Kinneret at all stages of stratification with significant increase during the mixing of the water column. Hydrogen sulfide inventory in the water column increases from March to December, and sharply decreases during the lake mixis in January. Sulfur isotope fractionation between sulfate and hydrogen sulfide as well as concentrations of sulfide oxidation intermediates can be explained either by microbial sulfate reduction alone or by microbial sulfate reduction combined with microbial disproportionation of sulfide oxidation intermediates. Our study of sulfur cycle in Lake Kinneret may be useful for understanding the range of biogeochemical processes in low sulfate oceans over Earth history
- …