3,029 research outputs found
The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT - Implications for time-resolved polarimetric measurements of Sgr A*
We report on the results of calibrating and simulating the instrumental
polarization properties of the ESO VLT adaptive optics camera system
NAOS/CONICA (NACO) in the Ks-band. We use the Stokes/Mueller formalism for
metallic reflections to describe the instrumental polarization. The model is
compared to standard-star observations and time-resolved observations of bright
sources in the Galactic center. We find the instrumental polarization to be
highly dependent on the pointing position of the telescope and about 4% at
maximum. We report a polarization angle offset of 13.28{\deg} due to a position
angle offset of the half-wave plate that affects the calibration of NACO data
taken before autumn 2009. With the new model of the instrumental polarization
of NACO it is possible to measure the polarization with an accuracy of 1% in
polarization degree. The uncertainty of the polarization angle is < 5{\deg} for
polarization degrees > 4%. For highly sampled polarimetric time series we find
that the improved understanding of the polarization properties gives results
that are fully consistent with the previously used method to derive the
polarization. The small difference between the derived and the previously
employed polarization calibration is well within the statistical uncertainties
of the measurements, and for Sgr A* they do not affect the results from our
relativistic modeling of the accretion process.Comment: 16 pages, 15 figures, 5 tables, accepted by A&A on 2010 October 1
Reconstruction of Stellar Orbits Close to Sagittarius A*: Possibilities for Testing General Relativity
We have reconstructed possible orbits for a collection of stars located
within 0.5 arcsec of Sgr A*. These orbits are constrained by observed stellar
positions and angular proper motions. The construction of such orbits serves as
a baseline from which to search for possible deviations due to the unseen mass
distribution in the central 1000 AU of the Galaxy. We also discuss the
likelihood that some of these stars may eventually exhibit detectable
relativistic effects, allowing for interesting tests of general relativity
around the 2.6 x 10^6 solar mass central object.Comment: 20 pages, 5 figures submitted to Astrophysical Journal, substantial
changes and additions based on referee's comment
Prospects for the Determination of Star Orbits Near the Galactic Center
We simulate the observations of proper motion of stars very close to the
Galactic Center. We show that the speckle interferometry done with the Keck II
telescope is accurate enough to obtain orbital parameters for stars with the
period P about 10 y during 10 seasons of astrometric observations made once a
year. The determination of a single orbit will give central mass estimate with
the typical uncertainty of the existing mass determinations based on velocity
dispersion measurements. A much higher precision orbits will be measured in
several years when Keck Interferometer becomes operational, and fainter stars
are discovered even closer to Sgr A*. Astrometry alone will provide accurate
determination of the ratio: M/D^3, where M is the black hole mass and D is the
distance to the Galactic Center. If spectroscopic orbits of the stars are also
measured then both: M and D will be precisely determined.Comment: 13 pages, 5 figures, accepted by Ap
Pinpointing the massive black hole in the Galactic Center with gravitationally lensed stars
A new statistical method for pinpointing the massive black hole (BH) in the
Galactic Center on the IR grid is presented and applied to astrometric IR
observations of stars close to the BH. This is of interest for measuring the IR
emission from the BH, in order to constrain accretion models; for solving the
orbits of stars near the BH, in order to measure the BH mass and to search for
general relativistic effects; and for detecting the fluctuations of the BH away
from the dynamical center of the stellar cluster, in order to study the stellar
potential. The BH lies on the line connecting the two images of any background
source it gravitationally lenses, and so the intersection of these lines fixes
its position. A combined search for a lensing signal and for the BH shows that
the most likely point of intersection coincides with the center of acceleration
of stars orbiting the BH. This statistical detection of lensing by the BH has a
random probability of ~0.01. It can be verified by deep IR stellar
spectroscopy, which will determine whether the most likely lensed image pair
candidates (listed here) have identical spectra.Comment: 4 pages, 2 figures, submitted to ApJ
Near infrared flares of Sagittarius A*: Importance of near infrared polarimetry
We report on the results of new simulations of near-infrared (NIR)
observations of the Sagittarius A* (Sgr A*) counterpart associated with the
super-massive black hole at the Galactic Center. The observations have been
carried out using the NACO adaptive optics (AO) instrument at the European
Southern Observatory's Very Large Telescope and CIAO NIR camera on the Subaru
telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007
and 28 May 2008). We used a model of synchrotron emission from relativistic
electrons in the inner parts of an accretion disk. The relativistic simulations
have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe
the existence of a correlation between the modulations of the observed flux
density light curves and changes in polarimetric data. Furthermore, we confirm
that the same correlation is also predicted by the hot spot model. Correlations
between intensity and polarimetric parameters of the observed light curves as
well as a comparison of predicted and observed light curve features through a
pattern recognition algorithm result in the detection of a signature of
orbiting matter under the influence of strong gravity. This pattern is detected
statistically significant against randomly polarized red noise. Expected
results from future observations of VLT interferometry like GRAVITY experiment
are also discussed.Comment: 26 pages, 38 figures, accepted for publication by A&
- …