3 research outputs found

    Testate amoebae (Amoebozoa: Arcellinidae) as indicators of dissolved oxygen concentration and water depth in lakes of the Lacandón Forest, Southern Mexico

    Get PDF
    The ecology of aquatic protists such as testate amoebae is poorly known worldwide, but is almost completely unknown in lakes of the northern Neotropics. To address this knowledge gap, we analyzed testate amoebae (Amoebozoa: Arcellinidae) in lakes of the Lacandón Forest, one of the most biodiverse parts of southern México. We set out to evaluate the diversity of testate amoebae communities and assess whether testate amoebae taxa are reliable indicators of environmental variables dissolved oxygen and water depth. We collected 17 surface sediment samples from a range of water depths in six lakes across the Naha-Metzabok Biosphere Reserve, northeastern Chiapas state. We identified 15 testate amoebae taxa distributed across seven genera. Eleven were identified to species level and four to strain (infra-subspecific level), and taxa were distributed unevenly among samples. Distribution of taxa in samples was related to dissolved oxygen (DO) concentration in the water measured near the sediment surface. Arcella discoides and Centropyxis aculeata strain “aculeata” were the most tolerant of low oxygen concentrations, whereas the other taxa require higher DO levels. The influence of oxygen was also seen at the assemblage level. Sites with low DO concentrations had Shannon Diversity Index (SDI) values <1.5, an indication of stressful ambient conditions. We identified two species assemblage types, which are distinguished by their oxygen concentration requirements. Assemblage 1 was more diverse and possessed species that are intolerant of low oxygen concentrations, whereas Assemblage 2 possessed fewer, rarer, opportunistic species that tolerate stressful conditions. Low oxygen concentrations are related to water depth and the combination of these two variables is important in determining the composition of testate amoebae assemblages in Lacandón Forest lakes. Quantitative relationships between testate amoebae assemblages and water depth will enable use of sedimented amoebae remains for paleolimnological inference of past water level changes in lakes of the Lacandón Forest.Fil: Charqueño Celis, Norma Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Administración de Parques Nacionales. Parque Nacional "Nahuel Huapi"; ArgentinaFil: Garibay, Martin. Universidad Nacional Autónoma de México; MéxicoFil: Sigala, Itzel. Universidad Nacional Autónoma de México; MéxicoFil: Brenner, Mark. University of Florida; Estados UnidosFil: Echeverria Galindo, Paula. Technische Universitat Carolo Wilhelmina Zu Braunschweig. Iinstitut fur Geosysteme und Bioindikation.; AlemaniaFil: Lozano García, Socorro. Universidad Nacional Autónoma de México; MéxicoFil: Massaferro, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Administración de Parques Nacionales. Parque Nacional "Nahuel Huapi"; ArgentinaFil: Pérez, Liseth. Technische Universitat Carolo Wilhelmina Zu Braunschweig. Iinstitut fur Geosysteme und Bioindikation.; Alemani

    Ecological turnover in neotropical freshwater and terrestrial communities during episodes of abrupt climate change

    Get PDF
    The last 85,000 years were characterized by high climate and environmental variability on the Yucatan Peninsula. Heinrich stadials are examples of abrupt climate transitions that involved shifts in regional temperatures and moisture availability. Thus, they serve as natural experiments to evaluate the contrasting responses of aquatic and terrestrial ecosystems. We used ostracodes and pollen preserved in a 75.9-m-long sediment core (PI-6, similar to 85 ka) recovered from Lake Peten Itza, Guatemala, to assess the magnitude and velocity of community responses. Ostracodes are sensitive to changes in water temperature and conductivity. Vegetation responds to shifts in temperature and the ratio of evaporation to precipitation. Ostracodes display larger and more rapid community changes than does vegetation. Heinrich Stadial 5-1 (HS5-1) was cold and dry and is associated with lower ostracode and vegetation species richness and diversity. In contrast, the slightly warmer and dry conditions during HS6 and HS5a are reflected in higher ostracode species richness and diversity. Our paleoecological study revealed the greatest ecological turnover for ostracodes occurred from 62.5 to 51.0 ka; for pollen, it was at the Pleistocene/Holocene transition. Future studies should use various climate and environmental indicators from lake and marine sediment records to further explore late glacial paleoclimate causes and effects in the northern neotropics

    Compatibility of Diatom Valve Records With Sedimentary Ancient DNA Amplicon Data: A Case Study in a Brackish, Alkaline Tibetan Lake

    Get PDF
    Lake sediments represent valuable and widely used archives for tracking environmental and biotic changes over time. Past aquatic communities are traditionally studied via morphological identification of the remains of organisms. However, molecular identification tools, such as DNA metabarcoding, have revolutionized the field of biomonitoring by enabling high-throughput and fast identification of organisms from environmental samples (e.g., sediments and soil). Sedimentary ancient DNA (sedaDNA) metabarcoding, an approach to track the biodiversity of target organisms from sediment cores, spanning thousands of years, has been successfully applied in many studies. However, researchers seldom explore how well the signals from sedaDNA data correlate with the fossil records of target organisms. This information is essential to infer past environmental conditions and community changes of bioindicators when the increasingly popular molecular identification method, metabarcoding, is desired instead of a morphological identification approach. In this study, we explore the correlations of diatom valve records across the last ∼940 years with the diatom sedaDNA metabarcoding data from the same sediment core from lake Nam Co (Tibetan Plateau). Overall, the results from valve vs. sedaDNA data revealed concordant diatom richness as well as community patterns. However, several mismatches in the diatom taxonomic composition existed between the data sets. In general, sedaDNA data harbored much higher diatom diversity, but due to the lack of reference sequences in public databases, many molecular units (amplicon sequence variants) remained unclassified to lower taxonomic levels. As our study lake, Nam Co, is characterized by brackish water and alkaline pH, some likely cases for the observed taxonomic composition mismatches may be due to a valve dissolution issue. Nevertheless, significant drivers for the diatom richness and community structure largely corresponded between data sets. Both valve and sedaDNA data demonstrated similar breakpoints for historical diatom community shifts. A particularly strong shift in the diatom community structure occurred after ∼1950 CE, which may be associated with abrupt environmental changes on the Tibetan Plateau. Altogether, our study indicates that environmentally driven signals reflected by the diatom communities are successfully recovered via microfossil as well as molecular identification methods
    corecore