1,274 research outputs found

    Physical and chemical methods for eliminating propagules of indigenous mycorrhizal fungi from soil samples

    Get PDF
    El objetivo de este trabajo fue evaluar métodos para eliminar hongos nativos formadores de micorrizas arbusculares (HMA) o reducir su número en muestras de suelo, sin afectar sus propiedades edáficas y microbiológicas. Se estudió la aplicación de calor húmedo (autoclave), de calor seco (estufa), de hipoclorito de sodio (NaClO) y de formaldehído, en concentraciones entre 100,0 y 3,3 μl/g y 16,7 y 3,3 μl/g, respectivamente. Las semillas de raigrás (Lolium multiflorum Lam.) sembradas en sustratos que recibieron NaClO (100,0-33,3 μl/g) no germinaron y el autoclave incrementó el contenido de fósforo en el sustrato. Estos tratamientos no eliminaron la micorrización por HMA y ambos fueron descartados. En un segundo ensayo se analizaron los tratamientos estufa y formaldehído (10,0 μl/g), asociados o no a la descontaminación de las semillas y a la reinoculación con HMA. Ambos procedimientos redujeron o eliminaron la micorrización por HMA nativos en suelos con 12 a 29 mg/kg de fósforo y permitieron la multiplicación de inóculos de HMA. El tiempo de ventilación de las muestras y los requisitos de seguridad fueron mayores con la aplicación de formaldehído.Fil: Covacevich, Fernanda. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires. Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones en Biodiversidad y Biotecnología; ArgentinaFil: Castellari, Claudia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires. Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Echeverria, Hernán E.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires. Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentin

    Numerical Regge pole analysis of resonance structures in elastic, inelastic and reactive state-to-state integral cross sections

    Get PDF
    We present a detailed description of a FORTRAN code for evaluation of the resonance contribution a Regge trajectory makes to the integral state-to-state cross section (ICS) within a specified range of energies. The contribution is evaluated with the help of the Mulholland formula (Macek et al., 2004) and its variants (Sokolovski et al., 2007; Sokolovski and Akhmatskaya, 2011). Regge pole positions and residues are obtained by analytically continuing S-matrix element, evaluated numerically for the physical values of the total angular momentum, into the complex angular momentum plane using the PADE-II program (Sokolovski et al., 2011). The code decomposes an elastic, inelastic, or reactive ICS into a structured, resonance, and a smooth, 'direct', components, and attributes observed resonance structure to resonance Regge trajectories. The package has been successfully tested on various models, as well as the F+H 2‚ÜíHF+H benchmark reaction. Several detailed examples are given in the text

    Complex angular momentum theory of state-to-state integral cross sections: Resonance effects in the F+HDHF(v=3)+DF + HD \to HF(v' = 3) + D reaction

    Get PDF
    State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially near a reactive threshold. An ICS is usually obtained by summing partial waves at a given value of energy. For this reason, the knowledge of pole positions and residues in the complex energy plane is not sufficient for a quantitative description of the patterns produced by resonance. Such description is available in terms of the poles of an S-matrix element in the complex plane of the total angular momentum. The approach was recently implemented in a computer code, available in the public domain [Comput. Phys. Commun., 2014, 185, 2127]. In this paper, we employ the package to analyse in detail, for the first time, the resonance patterns predicted for integral cross sections (ICSs) of the benchmark F + HD → HF(v′ = 3) + D reaction. The v = 0, j = 0, Ω = 0 → v′ = 3, j′ = 0, 1, 2, and Ω′ = 0, 1, 2 transitions are studied for collision energies from 58.54 to 197.54 meV. For these energies, we find several resonances, whose contributions to the ICS vary from symmetric and asymmetric Fano shapes to smooth sinusoidal Regge oscillations. Complex energies of metastable states and Regge pole positions and residues are found by Padé reconstruction of the scattering matrix elements. The accuracy of the code, relation between complex energies and Regge poles, various types of Regge trajectories, and the origin of the J-shifting approximation are also discussed

    A Method for Systematic Adaptation and Synchronization of Healthcare Processes

    Get PDF
    International organizations, as the World Health Organization (WHO) and national governments are constantly defining (or modifying) new healthcare protocols and procedures. Those changes have a significant impact, on one side, on the organizational concerns of a great number of healthcare institutions and centers, and on the other side, on their health information systems that need to be adapted according to the new (or modified) procedures. Administrative workflows are commonly defined by a high level entity and they must then be applied on different institutions ruled by this high level entity. Those workflows must then be adapted to the particular circumstances of each institution, complying with the general regulations of the process established at the top level. This problem, called Hierarchical Adaptation Problem, also implies establishing the methods to evolve together the high level regulation. Such methods must maintain the consistency among the different levels by means of the propagation of the changes to all the different adaptations of the original workflow. To solve this problem, this work introduces the Hierarchical Adaptation Method. A method based on ontologies to define the rules that must be satisfied by a generic workflow to be considered adaptable to different application cases and the rules that must be satisfied by its adapted versions. Moreover, it provides the operations to facilitate both adaptation of administrative workflows and propagation of changes

    Human peritoneal mesothelial cell death induced by high-glucose hypertonic solution involves Ca2+ and Na+ ions and oxidative stress with the participation of PKC/NOX2 and PI3K/Akt pathways

    Get PDF
    Indexación: Web of Science; Scopus.Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.https://www.frontiersin.org/articles/10.3389/fphys.2017.00379/ful
    corecore