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Abstract

We present a detailed description of a FORTRAN code for evaluation of the resonance
contribution a Regge trajectory makes to the integral state-to-state cross section
(ICS) within a specified range of energies. The contribution is evaluated with the
help of the Mulholland formula [Macek et al (2004)] and its variants [Sokolovski et
al (2007); Sokolovski and Akhmatskaya (2011)]. Regge pole positions and residues
are obtained by analytically continuing S-matrix element, evaluated numerically
for the physical values of the total angular momentum, into the complex angular
momentum plane using the PADE II program [Sokolovski et al (2011)]. The code
decomposes an elastic, inelastic, or reactive ICS into a structured, resonance, and a
smooth, ’direct’, components, and attributes observed resonance structure to reso-
nance Regge trajectories. The package has been successfully tested on several mod-
els, as well as the F + H2→ HF+H benchmark reaction. Several detailed examples
are given in the text.
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LONG WRITE-UP

1 Introduction

In the last fifteen years the progress in crossed beams experimental techniques
has been matched by the development of state-of-the-art computer codes ca-
pable of modelling atom-diatom elastic, inelastic and reactive differential and
integral cross sections (ICS) [1]- [10]. The ICS, accessible to measurements
in crossed beams, are often structured, and so offer a large amount of useful
information about details of the collision or reaction mechanism. This infor-
mation needs to be extracted and analysed, which often presents a challenging
task. One distinguishes two main types of collisions: in a direct collision the
partners depart soon after the first encounter, while in a resonance collision
they form an intermediate complex (quasi-molecule) which then breaks up into
products (reactive case) or back into reactants (elastic or inelastic case). The
resonance pathways may become important or even dominant at low collision
energies. For this reason, accurate modelling and understanding of resonance
effects gains importance in such fields as cold atom physics and chemistry of
the early universe.
Once the high quality scattered matrix is obtained numerically, one needs to
understand the physics of the reaction, often not revealed until an additional
analysis is carried out. In particular, resonances invariably leave their signa-
tures on the integral state-to-state cross sections. In this paper we propose and
describe software for the analysis of such resonance patterns. Relevant infor-
mation on the Regge poles can be found in Refs.[11]-[16]. Some applications of
the poles to the angular scattering and integral cross sections are discussed in
Refs.[17]-[36] and [37]-[42], respectively. For a description of the type-II Padé
approximation, used by the software, the reader is referred to Refs.[43]-[50].

2 Background and theory

We start with a brief review of the techniques required for our analysis.

2.1 The integral, or total, scattering cross section

An integral (total) cross section, σ(E), gives the total number of incident
particles with the energy E, scattered in all possible directions per unit time,
for unit incoming flux. This definition is valid for a single particle scattered
by a central force, as well as for an atom A colliding with a diatomic molecule
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(BC).
In the latter case, the collision partners may part in the same arrangement
(A + BC), with the molecule in the same internal state described by the
vibrational (v), rotational (j), and helicity (Ω = projection of j onto the final
atom-diatom velocity) quantum numbers. This is elastic scattering.
In an inelastic scattering event, the arrangement (A+BC) remains the same,
yet the internal quantum numbers of the molecule BC are changed, (v, j,Ω→
v′, j′,Ω′).
Finally, in a reactive event the atom B becomes attached to the atom A
(A+BC → AB+C), and the quantum numbers of the newly formed diatomic
may take any values allowed by the conservation laws.
The probability amplitude for each process is defined for an energy E (total,
if it includes the internal energy of the reactant diatomic, or collision, Ecoll, if
it does not), and a value of the total angular momentum J (we use ~ = 1). It
is given by complex-valued scattering (S-) matrix element Sαν′←ν(E, J), where
α = elastic, inelastic, reactive, and ν is the shorthand for (v, j,Ω).
In all cases, the integral cross section can be written as a partial wave sum
(PWS) over all physical (i.e., integer) values of the total angular momentum.
For the elastic channel, where the interference with the incoming wave must
be taken into account, one has

σαν′←ν(E) =
2π

k2
ν

∞∑
J=Jmin

(J + 1/2)|Sαν←ν(E, J)− 1|2, α = elastic, (1)

where

Jmin = |Ω|, (2)

since the projection of the molecule’s angular momentum on the relative ve-
locity cannot exceed the total angular momentum J .
For an inelastic or reactive process there is no such interference, and the ICS
takes the form

σαν′←ν(E) =
2π

k2
ν

∞∑
J=Jmin

(J + 1/2)|Sαν′←ν(E, J)|2, α = inelastic or reactive,

(3)
with

Jmin = max(|Ω|, |Ω′|). (4)

In Eqs. (1) and (3) kν =
√

2µEcoll is the reactant’s relative wave vector, which
in the case of the single-channel potential scattering becomes the wave vector
of the incoming plane wave, k =

√
2µE, µ being the corresponding reduced
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mass.
Identification and quantitative analysis of structures produced in the ICS by
the capture of collision partners into long lived metastable states is the main
subject of this paper. Despite their simplicity, Eqs.(1)-(3) are not best suited
for the task, since the S-matrix elements contain contributions from both the
direct and the resonance mechanisms. A more convenient representation, de-
signed to separate the two contributions, was proposed by Macek et al in their
study of the proton scattering by hydrogen [37], and later used by Ovchinnikov
et al who considered proton impact on inert gas atoms [38]. The method relies
on the concept of Regge poles. which we will discuss here only briefly.

2.2 Regge poles and Regge trajectories

Regge poles are the poles of S-matrix element Sν′←ν(E, J) in the first quadrant
complex plane of the (continuous) variable J , evaluated at a fixed energy E
[11]. Sharp long-lived resonances manifest themselves as poles at J = Jn(E),
n = 1, 2, ..., close to the real axis,

Sν′←ν(E, Jn) =∞, ReJn > 0, ImJn > 0. (5)

Resonance Regge poles are closely related to the resonance complex energy
poles [34], [14], [40], but are more convenient for the analysis of the quantities
given by partial wave sums at a fixed energy, like the ICS in Eqs. (1)-(3). A
Regge pole cannot disappear suddenly (except by coalescing with a complex
zero of the S) and, as the energy changes, traces a continuous curve in the
complex angular momentum (CAM) plane. These curves are known as Regge
trajectories.
It is useful to distinguish between at least two types of Regge trajectories
[15]: those which at zero angular momentum correspond to a bound state
supported by the potential (type I), and those corresponding at J = 0 to a
potential’s metastable state (type II). Regge trajectories [curves ImJn(E) vs.
ReJn(E)] of the type (I) typically start, at low energies, on the real J-axis,
and then move into the complex J-plane in its first quadrant. The trajectories
of the type (II) initially descend on the real J-axis, and affect an ICS in a dif-
ferent way [15]. Our test cases, provided below, contain examples of each type.

2.3 The Mulholland formula

Macek et al [37], [38] replaced the discrete sum over J in Eq. (1) by an integral,
and then deformed the contour of integration to run along the imaginary J-
axis, thereby picking contributions from the Regge poles in the first quadrant.
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The result is the decomposition

σelastic(E) =
2π

k2

∫ ∞
0

f(E, λ)λdλ−Re
∫ i∞

0

4πf(E, λ)/k2

1 + exp(−2iπλ)
λdλ (6)

−2π

k2
Re

∑
n

4πiRes[f(E, λn)]λn
1 + exp(−2iπλn)

where f(E, λ) ≡ |S(E, λ) − 1|2, λ ≡ J + 1/2, λn = Jn + 1/2 is the position
of the n-th pole in the CAM plane, and Resn[f(E, λn)] is the residue at the
n-th pole,

Res[f(E, λn)] ≡ lim
λ→λn

(λ− λn)f(E, λ). (7)

The integrals along the real and imaginary axis are expected to be slowly
varying function of the energy, with the resonance structure given mostly by
the last sum in Eq.(6). The authors of Refs. (1)-(3) traced their technique
back to a 1928 paper by H. P. Mulholland [51] (whose subject, one must say,
had very little to do with the present analysis), and we will follow them in
calling the result (6) the Mulholland formula.
The practical use of the formula (6) is quite simple: one chooses a particular,
say the n-th, Regge trajectory, evaluates along it the contribution to the ICS
given by the N -th term in the sum,

IMull
n (E) = −2π

k2
Re

4πiRes[f(E, λn)]λn
1 + exp(−2iπλn)

, (8)

and then subtracts the result from the full ICS. If what is left is smooth
and structureless, one can identify the pattern in the full ICS as arising from
this particular resonance trajectory. There are many possible patterns. From
(8) one readily sees that a pole contribution is greatly enhanced whenever
the trajectory passes in the vicinity of a positive integer, Jn ≈ N > 0 [37].
This is hardly surprising since one recalls that a true bound state requires an
integer value of J , and that a sharp resonance is in fact a bound state which
is weekly connected to a continuum. Depending on the potential, a trajectory
may follow in the vicinity of the real J-axis, passing by several integer J ’s, and
thus producing a series of peaks in the ICS [15], [41]. Or it can veer steeply
deep into the CAM plane thus producing just one peak, or even no peaks at
all [37]. A trajectory following the real axis at a larger distance would produce
in the ICS not peaks, but sinusoidal oscillations [31]. A trajectory may start
on the real axis, and then move deeper into the CAM plane, or descend to the
real J-axis, and then follow it for some time. All these possibilities account a
large variety of ways in which a resonance may produce a structure in an ICS.
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2.4 Modifications of the Mulholland formula

The Mulholland decomposition of the ICS (6) is easily modified to the case of
reactive and inelastic transitions as [31] (below α = inelastic or reactive)

σαν′←ν(E) =
2π

k2
ν

∫ ∞
Jmin−1/2

|Sν′←ν(E, λ)|2λdλ+ (9)

8π2

k2
ν

Im
∑
n

λnRes[Sν′←ν(E, λn)]S∗ν′←ν(E, λ
∗
n)

1 + exp(−2iπλn)
+ Iν′←ν(E),

where ∗ denotes complex conjugation, and Iν′←ν contains integrals along the
imaginary λ-axis, similar to the second term in Eq. (6). In the following we
will not be interested in the explicit form of Iν′←ν . Equation (9) is exact, and
if necessary, Iν′←ν can be evaluated by subtracting from σαν′←ν(E), computed
as a PWS, the first two terms in its r.h.s.
For an elastic transition in a multi-channel case, α = elastic, ν = ν ′, one
replaces in Eq.(9)

Sν′←ν(E, λ)→ Sν′←ν(E, λ)− 1. (10)

The formula (9), which reduces to (6) in the single-channel case, is to be used
just as described at the end of the previous Subsection, and is employed in our
computer code. Previously, it has been applied to analyse resonance structures
in the ICS of the benchmark F +H2 → HF +H reaction [31], [40].
Returning to the single-channel case, one notes [15], [41] that the factor

[1 + exp(−2iπλn)]−1 = −
∞∑

M=1

exp(2πiMJn) (11)

is a sum of a geometric progression in which the first term, a unity, is missing.
(For a detailed discussion of this point the reader is referred to Ref. [15]) The
physical picture is that of an intermediate metastable complex which rotates
and decays at the same time. The optical theorem [41] allows one to interpret
the terms in the r.h.s of Eq.(11) as the contributions a rotating complex makes
to the forward scattering amplitude after M = 1, 2... complete rotations. The
missing term in (11) is just what the complex contributes to forward scattering
immediately after its formation, before completing even one rotation. Thus,
the M = 0 term can be subtracted from the first, and added to the second
term in Eq.(9). This yields a modified Mulholland formula [15],

σ(E) =
2π

k2

∫
Γ
|S(E, λ)− 1|2λdλ+

8π2

k2
Im

∑
n

λnRes[S(E, λn)]

1 + exp(2iπλn)
(12)

+I(E),
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where the integration contour Γ runs in the first quadrant of the CAM above
all poles which make significant Mulholland contributions to the ICS. Decom-
position (12) was shown to achieve a better separation of the ICS into direct
and resonance parts for a simple single-channel model in [15], and we include
the modified formula in the present code. However, we have yet been unable
to extend its application to the multichannel case, and the option for using
(12) remains open to single-channel potential scattering only.

2.5 Padé reconstruction of the scattering matrix element

The application of the decompositions (9)-(12) requires the knowledge of the
pole positions λn = Jn + 1/2, and the corresponding residues, Res[S(E, λn)].
Since the analytic continuation of |f(E, λ)|2 from the real axis into the com-
plex λ-plane is f(E, λ)f ∗(E, λ∗), one also requires the values of S∗(E, λ∗n).
These data are not usually available since a computer code used in modelling
a chemical reaction typically evaluates the S-matrix elements, S(E, J), for the
physical integer values of J = 0, 1, 2, ...N , with N sufficiently large to converge
the partial waves sums (1) and (3). Using these values, we construct a rational
Padé approximant, ([x] stands for the integer part of x)

SPadeν′←ν(E, J) ≡ KNexp[i(aJ2 + bJ + c)]×
∏[N/2]
i=1 (J − Zi)∏[(N−1)/2]

i=1 (J − Pi)
, (13)

where Pi(E) and Zi(E) stand for poles and zeroes of the approximant, respec-
tively, and KN(A), a(E), b(E) and c(E) are energy dependent constants. The
approximant is conditioned to coincide with S(E, J) at the N integer values
of J ,

SPadeν′←ν(E, J) = Sν′←ν(E, J), J = 0, 1, ...N, (14)

and provides an analytic continuation of the exact function S(E, J) in a region
of the complex J-plane, containing the values (14). Inside this region, the poles
and zeroes of the approximant coincide with the true Regge poles and zeroes
of the S-matrix element. The remaining poles and zeroes tend to mark the
border of the region, beyond which Padé approximation fails [47]-[50]. Thus,
for a given pole Jn = Pj we evaluate the required quantities as

Res[Sν′←ν(E, λn)] = KNexp[i(aP 2
j + bPj + c)]×

∏[N/2]
i=1 (Pj − Zi)∏[(N−1)/2]

i=1,i 6=j (Pj − Pi)
, (15)
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and

S∗(E, λ∗n) = K∗Nexp[−i(aP 2
j + bPj + c)]×

∏[N/2]
i=1 (Pj − Z∗i )∏[(N−1)/2]

i=1 (Pj − P ∗i )
, (16)

which provides the data needed for evaluating the resonance contributions in
the Mulholland formulas (9) and (12).
The program used to construct the Padé approximant (13) is essentially the
PADE II code reported in the Ref. [50]. The minor modifications made to adapt
it to the problem in hand will be described below.

2.6 A brief summary

Our analysis consists in attributing to particular Regge trajectories resonance
structures observed in an elastic, inelastic of reactive ICS obtained by numer-
ical modelling of a scattering process. The behaviour of the scattering matrix
element in the complex J-plane, required for evaluating the contribution a
trajectory makes to the ICS, is reconstructed by using Padé approximants of
type (II) [50]. The method gives a clear picture of how a resonance affects the
ICS in a range of energies. It does not, however, reveal the physical origin of
the resonance (e.g., its location in the entrance or exit channel on the potential
surface), which must be established independently.

3 ICS Regge package: Overview

3.1 Installation

This version of ICS Regge is intended for IA32 / IA64 systems running the
Linux operating system. It requires Fortran and C compilers. The software
is distributed in the form of a gziped tar file, which contains the ICS Regge

source code, PADE II 1.1 source code, QUADPACK source code, test suites for
each package, as well as scripts for running and testing the code. The detailed
structures of each subpackage, ICS Regge, PADE II 1.1 and QUADPACK, are
presented in the Appendices C, D and E. For users benefits we supply a file
README for each package in directories ICS, ICS/PADE and ICS/QUADPACK. The
files provide a brief summary on the code structure and basic instructions for
users. The ICS Regge Manual, ICSManual.pdf, is located in ICS/ directory
whereas PADE II Manual, FManual.pdf, can be found in ICS/PADE directory.
In addition, the documents describing PADE II and QUADPACK are available
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from http://www.cpc.cs.qub.ac.uk/ (Catalogue identifier: AEHO v1 0) and
http://www.netlib.org/quadpack/ respectively. Once the package is un-
packed the installation should be done in the following order:

1. Installing QAUDPACK library

2. Installation of the PADE II package

3. Installation of the ICS Regge package.

Installation procedure for each subpackage is straightforward and can be suc-
cessfully performed by following the instructions in the README files or / and
in ICS Regge, PADE II Manuals. Here we just want to notice that two ways of
building the ICS Regge and PADE II executables are available. One is manual
and is recommended for the first time users at the installation stage, whereas
the fully automated way is useful at late stages of using the package. While
a manual building assumes using a Makefile UNIX with the adjusted envi-
ronmental variables, an automated building relies on the run script runICS

with the built-in instructions for making the packages. The appropriate val-
ues of environmental variables are passed, in this case, through the input file
ICS/input/INPUT controlled by a user (see section 5 for details).

3.2 Testing

Three test suits are prepared for each subpackage to validate the installation
procedure.

3.2.1 Running the QUADPACK test

To test the QUADPACK library, one has to run quadpack prb.sh script in
/QUADPACK/scripts directory.

The results of 15 tests can be found in quadpack prb output.txt file in
ICS/QUADPACK/test directory. The message
QUADPACK PRB: Normal end of execution.
confirms that the code passed the validation test.

3.2.2 Running the PADE II test suite

The input for 4 jobs, test1, test2, test3 and test4, are provided in di-
rectories ICS/PADE/test/input/test name, where test name is either test1
or test2 or test3 or test4. To submit and run a test suite, first, one can
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change the definition of the Fortran compiler, F77, C compiler, CC, their paths,
COMP PATH and CCOMP PATH respectively, if necessary in Makefile test in di-
rectory ICS/PADE/src, and then go to the directory ICS/PADE/test and run a
script ./run TEST. All tests will be run in separate directories. Each test takes
about 1 - 5 minutes to run on a reasonably modern computer. The message
Test test name was successful

appearing on the screen at the conclusion of the testing process confirms that
the code passed the validation test test name . The results of the simulation
can be viewed in the ICS/PADE/test/output/test name directory. The mes-
sage
Your output differs from the baseline!

means that the calculated data significantly differ from that in the baselines.
The files PADE/test/output/test name/diff file can be checked to judge
the differences.

3.2.3 Running the ICS Regge test suite

For simplicity, the test suite for ICS Regge is designed in the similar manner
as the test suite for PADE II. The input for 3 jobs, test1, test2 and test3

are provided in directories ICS/test/input/test name respectively, where
test name is either test1 or test2 or test3. The definitions of the FORTRAN

and C compilers and their paths, as well as the path of the PADE II directory,
can be changed in the INPUT files in each directory test name, if required.
The test suit can be run in the directory ICS/test using the following com-
mands: ./run TEST < test data.txt. All tests are run in separate directo-
ries, ICS/test/output/test1, ICS/test/output/test2 and ICS/test/output/test3.
Each test takes about 1 - 6 minutes to run on a reasonably modern computer.
To analyse the test results, the message on the screen at the conclusion of
the testing process has to be inspected. The message Test test name was

successful confirms that the code passed the validation test test name. The
results of the simulation can be viewed in the ICS/test/output/test name

directory. The message

test name output differs from the baseline!

Check your output in output/test name /ics.mull

Baseline file: baselines/test name /ics.mull

Differences: output/test name /error file

means that the calculated data significantly differ from that in the baselines.
The differences can be found in the files ICS/test/output/test name/error file.
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4 Computational modules of ICS Regge

4.1 Padé reconstruction and PADE II options

As discussed above, an important part of the calculation consists in performing
an analytical continuation of the S-matrix element into the CAM plane. The
user has some flexibility in doing so. It concerns mostly the quadratic phase in
Eq. (13), which must itself be determined in the course of the Padé reconstruc-
tion. The need for separating this rapidly oscillating term arises from the fact
that the Padé technique used here, works best for slowly varying functions.
Thus, by removing the oscillatory component, one expands the region of valid-
ity of the approximant in the CAM plane, which allows to correctly describe
a larger number of poles. The extraction of the quadratic phase proceeds it-
eratively. Since sharp structures in the phase of the S-matrix element usually
come from the Regge poles and zeroes located close to the real axis, one de-
fines a strip -dxl < ImJ < dxl around the real J-axis, and removes from the
previously constructed approximant all poles and zeroes inside the strip. The
smoother phase of the remainder is fitted to a quadratic polynomial, and this
quadratic phase is then subtracted from the phase of the input values of S,
after which a new approximant is constructed with these modified input data.
The process is repeated niter times resulting in a (hopefully) improved Padé
approximant. There is no rigorous estimate of the improvement achieved, and
the practice shows that in many cases using niter > 1 gives tangible benefits,
while in some cases better results are achieved with niter=1 or 2. It is for the
user to decide on the best values of dxl and niter for a particular problem.
The input files required for running the Padé II code are stored in the in-
put directory where they are labelled 1, 2...NE. A typical input file is given in
Appendix B. The file differs from the similar input used in Padé II package
reported in [50] by one line added at the end, which should contain the colli-
sion energy in meV .
Other parameters for Padé reconstruction are read from the input/INPUT file.
These include the pathways to the PADE directory, to the FORTRAN and C com-
pilers, and the compiler options (see #16-#21).
The next entry (#22) determines whether there should be a change of parity
from the original data. This depends on the convention used in calculating the
S-matrix elements, as explained in [50] (we use 0 for no and 1 for yes).
Entry (#23) decides whether one should remove the guessed values of the
quadratic phase prior to the construction of the first Padé approximant in a
series of iterations. Its recommended value is 1 (yes).
Entry (#24) determines if multiple precision routines should be used in cal-
culating the Padé approximant. The recommended value is 1 if the number of
partial waves (PW) exceeds 40. It can also be used for a smaller number of
(PW) to check the stability of calculations.
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Entries (#25 and #27 ) allow us to repeat the calculations with added non-
analytical noise of magnitude fac, nstime times. This may be needed to check
the sensibility of calculations to numerical noise. The recommended initial val-
ues are nstime=0 and fac=0, in which case no noise is added.
Entry (#26) determines the number of points in the graphical output from
Padé II [50].
Finally, the user has the options of changing the number of partial waves, the
number of iterations and the value of dxl for all files used in the current run
by setting to 1 iover1, iover2 and iover3 in entries (#28, #29 and #30).
The corresponding parameters are reset to the values nread1, niter1, and
dxl1, specified in the entries (#31, #32 and #33), respectively.

4.1.1 Changes made to PADE II

The changes from the previous version [50] include
(I) replacement of all the Numerical Algorithms Group (NAG) routines with
ones available in the public domain, and
(II) provision of additional controls allowing to change the parameters of Padé
reconstruction for all energies in the run at once, without changing individual
input files labelled 1,2,..., as discussed in the previous Section.
A brief summary of the changes made to subroutines is given below.
Subroutine FIT (fit.f)
The NAG routine g05ccf has been replaced by a subroutine svdfit described
in section 15x.4 of Numerical Recipes in C: The Art of Scientific Computing
(Second Edition), published by Cambridge.

Subroutine ZSRND (zsrnd.f)
The NAG routine E02ACF has been replaced by a sequence of calls to the sys-
tem routines srand48 and drand48.

Subroutine IDET SEED (idet seed.c)
Added new routine generating the seed for srand48.

Wrapper (wrapper.c)
Added wrapper allowing for calling C-routines idet seed.c, srand48 and
drand48 in the Fortran code.

4.2 The structure of ICS Regge

The ICS Regge application is a sequence of 12 FORTRAN files. The files are
listed below, and their functions are explained.
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Program ICS Regge (ICS Regge.f)
Main program.

Subroutine READ1 (read1.f)
Opens and reads the original input file at a given energy.

Subroutine READ (read.f)
Reads the parameters of the Padé reconstruction at a given energy.

Subroutine SORT (sort.f)
At a given energy, selects poles and zeroes in the specified region of the com-
plex angular momentum (J-) plane and discards pole/zero pairs (Froissart
doubles).

Subroutine TCROSS (tcross.f)
Evaluates the partial wave sum (PWS) for the integral cross section using the
original data and also the Padé approximant for integer values of J . Estimates
the error of the Padé reconstruction.

Subroutine TCINTE (tcinte.f)
Replaces the discrete PWS by integration over continuous values of J. Evalu-
ates the integral using the Padé approximant.

Subroutine MULLO (mullo.f)
At a given energy, evaluates the resonance (Mullholland) contribution to the
ICS from a pole chosen by hand from the list of available poles.

Subroutine MULL (mull.f)
At a given energy, evaluates the resonance (Mullholland) contribution to the
ICS from a pole with the real part closest to that of the pole chosen at the
previous energy.

Subroutine ZPADE (zpade.f)
Calculates the full Padé approximant.

Subroutine ZPR (zpr.f)
Evaluates the ratio of the two polynomials in the Padé approximant.

Subroutine ZRES (zres.f)
Calculates (part of) the residue for a chosen Regge pole from the Padé ap-
proximant.

Subroutine FST3 (fst3.f)
Supplies the integrand for the integral evaluated in tcinte.f.
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There are two additional utilities.

Subroutine SKIP (skip.f)
Decides which of the input data/energies must be included in the current run.

Subroutine SUBTR (subtr.f)
Subtracts from the ICS the contribution from a given Regge pole trajectory.
All files are located in the ICS/src directory.

4.3 The QUADPACK library

QUADPACK is a FORTRAN subroutine package for the numerical computation
of definite one-dimensional integrals. It originated from a joint project of R.
Piessens and E. de Doncker (Appl. Math. and Progr. Div.- K.U.Leuven, Bel-
gium), C. Ueberhuber (Inst. Fuer Math.- Techn.U.Wien, Austria), and D.
Kahaner (Nation. Bur. of Standards- Washington D.C., U.S.A.) [44].
(http://www.netlib.org/quadpack/).

Currently one library subroutine, DQAGS, is used in the ICS Regge. The sub-
routine estimates integrals over finite intervals using an integrator based on
globally adaptive interval subdivision in connection with extrapolation [45]
by the Epsilon algorithm [46]. The subroutine is called from the ICS Regge

subroutine tcinte. For users convenience the whole library is available in
the package ICS Regge. The link to the library is provided in Makefile and
Makefile UNIX in ICS/src.

5 Running the ICS Regge code

5.1 Creating input data

Three input files are required for running calculations: a parameter file, INPUT,
located in ICS/input directory, and two input files for running PADE II. The
first file is the PADE II parameter file, param.pade. It is created on the fly by
running the script runICS. The second file or set of files has(ve) to be sup-
plied in ICS/input/PADE data directory and it (or they) contain(s) the data
to be Pade approximated. The name of directory PADE data can be chosen
arbitrary and should be specified in the parameter file INPUT before the start-
ing calculations. The names of the input files in the directory PADE data are
fixed to be 1, 2, ..NE, each of which contains previously computed values of
Sν′←ν(E, J) for J = 0, 1, 2, ...Jmaxi , for the energy Ek, k = 1, 2, ..NE, and the
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value of the energy itself. An example of input file is given in Appendix B and
also provided in directory ICS/input.
The file ICS/input/INPUT is self-explanatory and describes each input pa-
rameter to be specified. Please notice, that each input entry appears between
colons (:). We provide input files for all test cases considered under the names
ICS/input/INPUT.BOUND, ICS/input/INPUT.META and ICS/input/INPUT.FH2.
For an example of the parameter file INPUT see Appendix A.

5.2 Executing ICS Regge

The script runICS in ICS/ directory automates calculations. The following
assumptions are made in the script:
* all binaries for ICS Regge are placed in ICS/bin whereas the binaries for
the PADE II package are located in ICS/PADE/bin.
* input files are located in directory ICS/input. The names of the input files
are chosen as described in section 4.1.
* output files can be found in ICS/output on completion of the calculation. We
recommend running a calculation in directory ICS/. The command ./runICS

immediately starts the calculation.

5.3 Understanding the run script runICS

The run script runICS located in ICS/ directory does not require any tun-
ing, editing or corrections in order to start the calculation. Provided that the
parameter file ICS/input/INPUT is prepared for calculations, the run script
runICS takes care of the following steps in the following order:
1. INITIALIZATION
* Edits input parameter file INPUT

* Reads input parameters from INPUT

* Prepares directories for runs
* Sets the useful directories
* Cleans the directories if necessary
2. BUILDING PACKAGES
* PADE II

* ICS Regge

* Utilities
3. RUNNING ICS Regge FOR ALL INPUT FILES OF INTEREST
* Checks if the input file falls in the range of energies under investigation
* Runs PADE II with the current input file if it is in the considered range
* Runs ICS Regge if the current input file is in the considered range
*evaluates the non-resonance background by subtraction the Mulholland con-
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tributions from the exact ICS

4. OUTPUT DATA MANAGEMENT
* Stores the calculated data in the appropriate files

5.4 Using the code

Using the code involves at least two steps.

5.4.1 Step I

In the parameter file input/INPUT (see Appendix A) one sets
is this the first run? :yes:. The code evaluates the poles Pi and the
zeroes Zi of the Padé approximant (13) for each collisional energy Ek, for the
chosen set of files (see #5-#6 of Appendix A), in a region of the CAM plane,
x min ≤ RePi, Zi ≤ x max, y min ≤ ImPi, Zi ≤ y max, with the values x min,
x max, y min, and y max specified by the user in the file input/INPUT (see
#12 -#15 in the Appendix A).
One has the option of not including in the Padé approximant (13) the Frois-
sart doublets, i.e., pole-zero pairs, with the distance |Pi − Zj| < ε, with the
value of ε set in #11 of Appendix A. Such pairs often represent non-analytical
noise present in the input data [48], and their removal may be beneficial.
Also, at this stage the program evaluates, for all energies, the exact ICS using
Eq.(1) or (3), and the first integral in (9). The results are written in the files
output/ics.exact and output/ics.int, respectively. Provided the energy is
entered inmeV , and the reduced mass is in the unified atomic mass units,
(u.a.u or Daltons) (see #10 of Appendix A), the cross sections are in the units
of angstroms squared (Å2).
One then identifies Regge trajectories by plotting the pole positions vs. en-
ergy from the output file output/ics.pole. (It is recommended to to use the
plot ReP (E) vs. E, as the real parts of the pole positions are less sensitive to
numerical noise). In the plot the trajectories appear as continuous strings of
poles, with additional poles scattered around them in a random manner.

5.4.2 Step II

In the file input/INPUT one sets is this the first run? :no:. The code
takes the first of the files in the energy range E min≤ E ≤E max with E min and
E max specified by the user in #8-#9 of the file input/INPUT (see Appendix
A). It then displays all the poles at this energy within the specified range,
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from which the user chooses the one lying on the Regge trajectory of interest.
Then, if one sets follow trajectory by hand? :no:the code will follow the
trajectory automatically, choosing at the next energy the pole whose real part
is closest to that of the pole chosen at the previous energy.
If one chooses follow trajectory by hand? :yes: the program continues
display the poles, from which the user must choose the desired one for all
values of energy by hand. (The ”by hand” option is useful, e.g., when working
with a poorly defined trajectory from each some of the poles may be missing.)
In both cases, the corresponding Mulholland contribution in Eq. (9),

IMull
n (E) =

8π2

k2
ν

Im
λnRes[Sν′←ν(E, λn)]S∗ν′←ν(E, λ

∗
n)

1 + exp(−2iπλn)
(17)

is written down in the file output/ics.mull.
The pole position and the corresponding residue (in meV ) are stored in the
files output/ics.traj and output/ics.resid.
Once the energy E max is reached, the program stops and IMull

n (E) is sub-
tracted from the exact ICS in the file output/ics.exact, the result written
in output/ics.smooth.
Step II can be repeated several times, thus making the program follow dif-
ferent Regge trajectories, while choosing E min and E max as is convenient.
At the end, the Mulholland contributions from all trajectories considered are
subtracted from the exact ICS, and the much less structured non-resonance
part of the ICS is stored in the file output/ics.smooth.
Prior to operating the code one must specify whether the transition is elas-
tic or not, by answering elastic channel? with either :yes: or :no:. For
single channel scattering one may also choose to use the modified Mulholland
formula (12) by setting in the input/INPUT: modified Mulholland? :yes:

In this case the Mulholland contribution stored in output/ics.mull is given
by the pole term in (12),

IMull
n (E) =

8π2

k2
Im

λnRes[|S(E, λn)]

1 + exp(2iπλn)
. (18)

Note that to use the modified formula (12) after using the one given in Eq.(9),
one must also repeat the step I first. This is necessary to recalculate the exact
ICS, from which the contribution (17) will then be subtracted.

6 Examples of using ICS Regge

Three examples of using the ICS Regge package are provided. The input and
output files for these examples are included in the package.

18



6.1 Example 1: The hard sphere model (Regge trajectory of the type I)

The first example involves the S-matrix element for potential (single channel)
scattering off a hard sphere of a radius R − d surrounded by a thin semi-
transparent layer of a radius R. The spherically symmetric potential V (r) is
infinite for r < R− d, has a rectangular well of a depth V for R− d < r < R,
a zero range barrier Ωδ(r − R) (δ(x) is the Dirac delta), and vanishes else-
where [15]. In this example the energy of a non-relativistic particle of a mass
µ = 1 u.a.u varies from 1meV to 100meV , the radii of the hard sphere and
the width of the well d are 2.045Å and 0.592Å, respectively, V = 165 meV,
and Ω = 1.023 meV · Å. In this range, there is a single resonance Regge tra-
jectory, originating at J = 0 in the bound state of the well at about −14meV .
A detailed discussion of this model can be found in Refs.[15] where the Regge
trajectories were obtained by direct integration of the radial Schroedinger
equation for complex values of J . Here we seek to repeat the results of [15]
by evaluating the S matrix element for integer J ’s, and then using the Padé
reconstruction. The data files are in the directory input/BOUND.
Step I
In the directory input, copy the file INPUT.BOUND into the file INPUT. Run
the code to completion. Use the file output/ics.pole to plot real parts of
the poles vs. energy, and identify the Regge trajectory of interest. Use the file
output/ics.exact to plot the integral cross section in the specified range of
energies.
Step II
In the file INPUT change is this the first run? :yes: to is this the

first run? :no:. In the entry #5 set modified Mulholland? :no: or modified
Mulholland? :yes: to use Eq.(9) or Eq.(12), respectively. Run the code.
When prompted to choose a pole, choose the one at the beginning of the tra-
jectory, with ReJ ≈ 4.85 and ImJ ≈ 0.0043. After completion, use the files
in the directory output to plot the results. The correct results for the Regge
trajectory, the residues of the resonance pole, the Mulhollolland contribution,
and the background cross section are shown in Fig.1.

6.2 Example 2: The hard sphere model (Regge trajectory of the type II)

This is the same model as in Example 1, but with Ω = 66.463 meV · Å,
considered in the range of collision energies from 40meV to 100meV . In this
case, there is a single resonance Regge trajectory, originating at J = 0 in a
metastable state with the real part of about 48meV . The data files are in the
directory input/META.
Step I
In the directory input copy the file INPUT.META into the file INPUT. Run
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Fig. 1. Example 1: (a) The full ICS (solid) and the smooth background obtained by
subtracting from it the resonance contribution σres given by the pole term in Eq.(6)
(dashed) and in Eq.(12) (dot-dashed); (b) the real (dashed) and the imaginary
(solid) parts of the resonance Regge trajectory which affects the ICS in the shown
energy range; (c) the modulus (solid) and the real part (dashed) of the residue of
the Regge pole, ρ ≡ Res[S], which traces the trajectory in (b).

the code to completion. Use the file output/ics.pole to plot real parts of
the poles vs. energy, and identify the relevant Regge trajectory. Use the file
output/ics.exact to plot the integral cross section in the specified range of
energies
Step II
In the file INPUT, change is this the first run? :yes: to is this the

first run? :no:. In the entry #5 set modified Mulholland? :no: or modified
Mulholland? :yes: to use Eq.(9) or Eq.(12), respectively. Run the code.
When prompted to choose a pole, choose the one at the beginning of the tra-
jectory, with ReJ ≈ 0.195 and ImJ ≈ 3.22. After completion, use the files
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in the directory output to plot the results. The correct results for the Regge
trajectory, the residues of the resonance pole, the Mulholland contribution,
and the background cross section are shown in Fig. 2.

Fig. 2. Example 2: (a) The full ICS (solid) and the smooth background obtained by
subtracting from it the resonance contribution σres given by the pole term in Eq.(6)
(dashed) and in Eq.(12) (dot-dashed); (b) the real (dashed) and the imaginary
(solid) parts of the resonance Regge trajectory which affects the ICS in the shown
energy range; (c) the modulus (solid) and the real part (dashed) of the residue of
the Regge pole, ρ ≡ Res[S], which traces the trajectory in (b).
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6.3 Example 3: The F + H2(v = 0, j = 0,Ω = 0) → HF + H(v′ = 2, j′ =
0,Ω′ = 0) reaction. (Two pseudo-crossing Regge trajectories)

This example uses realistic numerical data obtained in Ref. [9], and analysed
in Refs. [34]-[35], [40]. In the specified energy range there are two resonance
Regge trajectories, both contributing to the Regge oscillations seen in the
state-to-state integral cross section. At the collision energy of about 38meV
the imaginary parts of the trajectories cross, while the real parts do not (for
details see Ref.[39]) The data files are in the directory input/FH 2.
Step I
In the directory input copy the file INPUT.FH2 into the file INPUT. Run the
code to completion. Use the file output/ics.pole to plot real parts of the
poles vs. energy, and identify two relevant Regge trajectories. Use the file
output/ics.exact to plot the integral cross section in the specified range of
energies.
Step II
In the file INPUT, change is this the first run? :yes: to is this the

first run? :no:. In the entry #5 keep modified Mulholland? :no:.
respectively. Run the code. When prompted to choose a pole, choose the one at
the beginning of first trajectory, with ReJ ≈ 1.54 and ImJ ≈ 1.17. After com-
pletion, if necessary, save the data in files output/ics.traj, output/ics.mull
and output/ics.resid, as they will be overwritten.
Run the code again. When prompted to choose a pole, this time choose the
one at the beginning of second trajectory, with ReJ ≈ 5.54 and ImJ ≈ 1.43.
After completion, use the files in the directory output to plot the results. The
correct results for the Regge trajectories, the residues of the resonance poles,
their respective Mulholland contributions, and the background cross section
are shown in Fig.3.
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Fig. 3. Example 3: (a) The full ICS (solid) and the smooth background obtained
by subtracting from it the resonance contribution σres given by the pole sum term
in Eq.(6) (dashed); (b) the real (dashed) and the imaginary (solid) parts of the two
resonance Regge trajectories which affect the ICS in the shown energy range; (c)
the Mulholland contributions [pole terms in Eq.(6)] for the trajectories shown in
(b): (I) (solid) and (II) (dashed). (d) the moduli (solid) and the real parts (dashed)
of the residues of the Regge poles, ρ ≡ Res[S], which trace trajectories (I) and (II)
in (b).

7 Summary

In summary, we present a user friendly computer code which evaluates the
contribution a resonance Regge trajectory makes to an integral cross section.23



Regge poles positions and residues are evaluated from numerical values of the
corresponding scattering matrix element by Padé reconstruction. The code
can be used for analysing elastic, inelastic and reactive transitions.
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9 Appendix A: Example of ICS Regge parameter file INPUT

Fig. 4. An example of the INPUT file for an inelastic or reactive transition.
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10 Appendix B: Example of ICS Regge input file 1

The contents of the file, also described in [50], include:
nread: the number of partial waves read,
niter: the number of iterations to remove the quadratic phase,
sht: this shifts the input grid points and may be used to avoid exponenti-
ation of extremely large number when evaluating the polynomials involved.
The value sht = nread/2 is suggested for a large number of partial waves.
jstart and jfin: with all input points numbered by j between 1 and N, deter-
mine a range jstart ≤ j ≤ jfin to be used for the Padé reconstruction.
inv: set to −1, not used in present calcualtions,
dxl: determines the width of the strip in which poles and zeroes are removed
while evaluating the quadratic phase in Eq. (12).

 nread niter sht jstart  jn  inv dxl
    20      4       0      1    18   -1  1.5 
  0.  -1.99870601 -0.0508557074
  1.  -0.555148566 -0.895604378
  2.  -0.025640943 -0.224998729
  3.  -0.000284346738 -0.0238455997
  4.  -2.39786402E-06 -0.00218991376
  5.  -7.80826626E-10  3.95177561E-05
  6.  -1.14352972E-14  1.50673028E-07
  7.    0.  6.74187776E-10
  8.    0.  2.03219359E-12
  9.    0. -1.06243235E-15
  10.  0. -6.73667676E-17
  11.  0. -6.00290847E-19
  12.  0. -4.19847314E-21
  13.  0. -3.95924061E-23
  14.  0.  1.23879594E-25
  15.  0.  9.01172959E-29
  16.  0.  1.0179967E-31
  17.  0.  0.
  18.  0.  0.
  19.  0.  0.
 1

Fig. 5. The input file 1, which contains the input parameters required to run
Padé II, the values of the S-matrix element for different values of J , and the value
of collision energy in meV .
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11 Appendix C: Structure of the ICS directory

 

 
 

 Fig. 6. Detailed structure of the ICS directory.
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12 Appendix D: Structure of the PADE directory
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!

Fig. 7. Detailed structure of the PADE directory.
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13 Appendix E: Structure of the QUADPACK directory

 
 

Fig. 8. Detailed structure of the QUADPACK directory.

29



References

[1] S.A. Harich, D. Dai, C.C. Wang, X. Yang, S.D. Chao, R.T. Skodje, Nature 419
(2002) 281.

[2] D.C. Clary, Science 279 (1998) 1879.

[3] D. Skouteris, D.E. Manolopoulos, W. Bian, H.-J. Werner, L.-H. Lai, K. Liu,
Science 286 (1999) 1713.

[4] P. Casavecchia, N. Balucani, G.G. Volpi, Ann. Rev. Phys. Chem. 50 (1999) 347.

[5] W.H. Miller, Adv. Chem. Phys. 25 (1974) 69.

[6] D. Skouteris, J.F. Castillo, D.E. Manolopoulos, Comput. Phys. Commun. 133
(2000) 128.

[7] S.C. Althorpe, F. Fernández-Alonso, B.D. Bean, J.D. Ayers, A.E. Pomerantz,
R.N. Zare, E. Wrede, Nature 416 (2002) 67.

[8] V. Aquilanti, S. Cavalli, D. De Fazio, J. Chem. Phys. 109 (1998) 3792.

[9] V. Aquilanti, S. Cavalli, A. Simoni, A. Aguilar, J.M. Lucas, D. De Fazio, J.
Chem. Phys. 121 (2004) 11675.

[10] V. Aquilanti, S. Cavalli, D. De Fazio, A. Volpi, A. Aguilar, X. Giménez, J.F.
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