29 research outputs found

    Comment on "Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction" [J. Chem. Phys. 137, 22A530 (2012)]

    Full text link
    In spite of the relevance of the proposal introduced in the recent work A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530, 2012, there is an important ingredient which is missing. Namely, the proof that the norms of the electronic and nuclear wavefunctions which are the solutions to the nonlinear equations of motion are preserved by the evolution. To prove the conservation of these norms is precisely the objective of this Comment.Comment: 2 pages, published versio

    Nonextensive thermodynamic functions in the Schr\"odinger-Gibbs ensemble

    Get PDF
    Schr\"odinger suggested that thermodynamical functions cannot be based on the gratuitous allegation that quantum-mechanical levels (typically the orthogonal eigenstates of the Hamiltonian operator) are the only allowed states for a quantum system [E. Schr\"odinger, Statistical Thermodynamics (Courier Dover, Mineola, 1967)]. Different authors have interpreted this statement by introducing density distributions on the space of quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the system. In this work we focus on one of the best known of these distributions, and we prove that, when considered in composite quantum systems, it defines partition functions that do not factorize as products of partition functions of the noninteracting subsystems, even in the thermodynamical regime. This implies that it is not possible to define extensive thermodynamical magnitudes such as the free energy, the internal energy or the thermodynamic entropy by using these models. Therefore, we conclude that this distribution inspired by Schr\"odinger's idea can not be used to construct an appropriate quantum equilibrium thermodynamics.Comment: 32 pages, revtex 4.1 preprint style, 5 figures. Published version with several changes with respect to v2 in text and reference

    Ehrenfest dynamics is purity non-preserving: a necessary ingredient for decoherence

    Get PDF
    We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Ref. 1. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space DD, and on the number of classical trajectories NN of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.Comment: Revtex 4-1, 14 pages, 2 figures. Final published versio

    Efficient formalism for large scale ab initio molecular dynamics based on time-dependent density functional theory

    Get PDF
    A new "on the fly" method to perform Born-Oppenheimer ab initio molecular dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent density functional theory, the electronic orbitals are evolved by a Schroedinger-like equation, where the orbital time derivative is multiplied by a parameter. This parameter controls the time scale of the fictitious electronic motion and speeds up the calculations with respect to standard Ehrenfest dynamics. In contrast to other methods, wave function orthogonality needs not be imposed as it is automatically preserved, which is of paramount relevance for large scale AIMD simulations.Comment: 5 pages, 3 color figures, revtex4 packag

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio

    Statistics and Nos\'e formalism for Ehrenfest dynamics

    Get PDF
    Quantum dynamics (i.e., the Schr\"odinger equation) and classical dynamics (i.e., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. In this paper we first show that the hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. Once we know the canonical distribution of a Ehrenfest system, it is straightforward to extend the formalism of Nos\'e (invented to do constant temperature Molecular Dynamics by a non-stochastic method) to our Ehrenfest formalism. This work also provides the basis for extending stochastic methods to Ehrenfest dynamics.Comment: 28 pages, 1 figure. Published version. arXiv admin note: substantial text overlap with arXiv:1010.149

    Ab Initio Molecular Dynamics on the Electronic Boltzmann Equilibrium Distribution

    Get PDF
    We prove that for a combined system of classical and quantum particles, it is possible to write a dynamics for the classical particles that incorporates in a natural way the Boltzmann equilibrium population for the quantum subsystem. In addition, these molecular dynamics do not need to assume that the electrons immediately follow the nuclear motion (in contrast to any adiabatic approach), and do not present problems in the presence of crossing points between different potential energy surfaces (conical intersections or spin-crossings). A practical application of this molecular dynamics to study the effect of temperature in molecular systems presenting (nearly) degenerate states - such as the avoided crossing in the ring-closure process of ozone - is presented.Comment: published in New J. Phy

    On the Coulomb-dipole transition in mesoscopic classical and quantum electron-hole bilayers

    Full text link
    We study the Coulomb-to-dipole transition which occurs when the separation dd of an electron-hole bilayer system is varied with respect to the characteristic in-layer distances. An analysis of the classical ground state configurations for harmonically confined clusters with N30N\leq30 reveals that the energetically most favorable state can differ from that of two-dimensional pure dipole or Coulomb systems. Performing a normal mode analysis for the N=19 cluster it is found that the lowest mode frequencies exhibit drastic changes when dd is varied. Furthermore, we present quantum-mechanical ground states for N=6, 10 and 12 spin-polarized electrons and holes. We compute the single-particle energies and orbitals in self-consistent Hartree-Fock approximation over a broad range of layer separations and coupling strengths between the limits of the ideal Fermi gas and the Wigner crystal

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package
    corecore