20 research outputs found

    Persistence of Nasopharyngeal Pneumococcal Vaccine Serotypes and Increase of Nonvaccine Serotypes Among Vaccinated Infants and Their Mothers 5 Years After Introduction of Pneumococcal Conjugate Vaccine 13 in The Gambia.

    Get PDF
    BACKGROUND: The widespread use of pneumococcal conjugate vaccine (PCV) has brought about a dramatic decrease in pneumococci of vaccine serotypes (VTs) but nonvaccine serotypes (NVTs) have emerged. METHODS: We conducted a cross-sectional survey (CSS) among infants who received 3 doses of 13-valent PCV (PCV13) and their mothers 5 years (CSS3) after PCV13 introduction. Nasopharyngeal swab samples were collected and cultured for isolation of Streptococcus pneumoniae. Whole-genome sequencing of the nontypeable strains was performed. Data were compared with those from 2 previous surveys conducted before PCV13 introduction (CSS1) and 1 year later (CSS2). RESULTS: Among infants, VT carriage decreased from 33.3% (113/339) in CSS1 to 11.4% (40/351) in CSS3 (P = .001) while NVTs increased from 53.1% (180/339) in CSS1 to 74.4% (261/351) in CSS3 (P < .001). Among mothers, there was a significant decrease in VTs between CSS2 8.4% (29/347) and CSS3 5.6% (19/342) (P = .006). NVTs increased from 16.6% (55/331) in CSS1 to 32.2% (110/342) in CSS3 (P < .001). In CSS3, the most prevalent VTs were 7F in infants and 3 in mothers, and the most prevalent NVTs were serogroup 16 and nontypeables, respectively. Genomic analysis showed that VTs were more likely than NVTs to lose their ability to express the capsule. CONCLUSIONS: Five years after PCV13 introduction, we show both direct (infants) and indirect effects (mothers) of the vaccine, while NVT replacement has occurred in both groups. Ongoing circulation of VTs warrants further study of their relevance in any consideration of a reduced dose schedule

    Immune sensing of Candida albicnas

    Get PDF
    Candida albicans infections range from superficial to systemic and are one of the leading causes of fungus-associated nosocomial infections. The innate immune responses during these various infection types differ, suggesting that the host environment plays a key role in modulating the host–pathogen interaction. In addition, C. albicans is able to remodel its cell wall in response to environmental conditions to evade host clearance mechanisms and establish infection in niches, such as the oral and vaginal mucosa. Phagocytes play a key role in clearing C. albicans, which is primarily mediated by Pathogen Associated Molecular Pattern (PAMP)–Pattern Recognition Receptor (PRR) interactions. PRRs such as Dectin-1, DC-SIGN, and TLR2 and TLR4 interact with PAMPs such as β-glucans, N-mannan and O-mannan, respectively, to trigger the activation of innate immune cells. Innate immune cells exhibit distinct yet overlapping repertoires of PAMPs, resulting in the preferential recognition of particular Candida morphotypes by them. The role of phagocytes in the context of individual infection types also differs, with neutrophils playing a prominent role in kidney infections, and dendritic cells playing a prominent role in skin infections. In this review, we provide an overview of the key receptors involved in the detection of C. albicans and discuss the differential innate immune responses to C. albicans seen in different infection types such as vulvovaginal candidiasis (VVC) and oral candidiasis

    Mass drug administration with azithromycin for trachoma elimination and the population structure of Streptococcus pneumoniae in the nasopharynx

    Get PDF
    ABSTRACTBackgroundMass drug administration (MDA) with azithromycin for trachoma elimination reduces nasopharyngeal carriage of Streptococcus pneumoniae in the short term. We evaluated S. pneumoniae carried in the nasopharynx before and after a round of azithromycin MDA to determine whether MDA was associated with changes in pneumococcal population structure.MethodsWe analysed 514 pneumococcal isolates cultured from nasopharyngeal samples collected in Gambian villages that received MDA for trachoma elimination. The samples were collected during three cross-sectional surveys conducted before the third round of MDA (CSS-1) and at one (CSS-2) and six (CSS-3) months after MDA. Whole genome sequencing was conducted on randomly selected isolates. Bayesian Analysis of Population Structure (BAPS) was used to cluster related isolates by capturing variation in the core genome. Serotype and multi-locus sequence type were inferred from the genotype. The Antimicrobial Resistance Identification by Assembly (ARIBA) tool was used to identify macrolide resistance genes.ResultsTwenty-seven BAPS clusters were assigned. These consisted of 81 sequence types (STs), 15 of which were novel additions to pubMLST. Two BAPS clusters, BAPS20 (p-value&lt;=0.016) and BAPS22 (p-value&lt;=0.032) showed an increase in frequency at CSS-3 not associated with antimicrobial resistance. Macrolide resistance within BASP17 increased after treatment (p&lt;0.05) and was carried on a mobile transposable element that also conferred resistance to tetracycline.ConclusionsLimited changes in pneumococcal population structure were observed after the third round of MDA suggesting treatment had little effect on the circulating lineages. An increase in macrolide resistance within one BAPS highlights the need for antimicrobial resistance surveillance in treated villages.</jats:sec

    Mass administration of azithromycin and Streptococcus pneumoniae carriage: cross-sectional surveys in the Gambia.

    Get PDF
    OBJECTIVE: To evaluate the effect of repeated mass drug administration (MDA) of azithromycin in the Gambia on the nasopharyngeal carriage of Streptococcus pneumoniae and on the emergence of antibiotic-resistant strains. METHODS: This study involved villages that participated in a cluster randomized trial comparing the effect of one versus three azithromycin MDA rounds on the prevalence of trachoma. Only villages in which most children received 7-valent pneumococcal conjugate vaccine were included. Three cross-sectional surveys were performed in two villages that received three annual MDA rounds: the first immediately before the third MDA round and the second and third, 1 and 6 months, respectively, after the third MDA round. The third survey also covered six villages that had received one MDA round 30 months previously. Pneumococcal carriage was assessed using nasopharyngeal swabs and azithromycin resistance was detected using the Etest. FINDINGS: The prevalence of pneumococcal carriage decreased from 43.4% to 19.2% between the first and second surveys (P < 0.001) but rebounded by the third survey (45.8%; P = 0.591). Being a carrier at the first survey was a risk factor for being a carrier at the second (odds ratio: 3.71; P <  0.001). At the third survey, the prevalence of carriage was similar after one and three MDA rounds (50.3% versus 45.8%, respectively; P = 0.170), as was the prevalence of azithromycin resistance (0.3% versus 0.9%, respectively; P = 0.340). CONCLUSION: Three azithromycin MDA rounds did not increase the prevalence of nasopharyngeal carriage of azithromycin-resistant S. pneumoniae strains compared with one round

    Safety and Immunogenicity of Malaria Vectored Vaccines Given with Routine Expanded Program on Immunization Vaccines in Gambian Infants and Neonates: A Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Heterologous prime-boost vaccination with chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) encoding multiple epitope string thrombospondin-related adhesion protein (ME-TRAP) has shown acceptable safety and promising immunogenicity in African adult and pediatric populations. If licensed, this vaccine could be given to infants receiving routine childhood immunizations. We therefore evaluated responses to ChAd63 MVA ME-TRAP when co-administered with routine Expanded Program on Immunization (EPI) vaccines. METHODS: We enrolled 65 Gambian infants and neonates, aged 16, 8, or 1 week at first vaccination and randomized them to receive either ME-TRAP and EPI vaccines or EPI vaccines only. Safety was assessed by the description of vaccine-related adverse events (AEs). Immunogenicity was evaluated using IFNγ enzyme-linked immunospot, whole-blood flow cytometry, and anti-TRAP IgG ELISA. Serology was performed to confirm all infants achieved protective titers to EPI vaccines. RESULTS: The vaccines were well tolerated in all age groups with no vaccine-related serious AEs. High-level TRAP-specific IgG and T cell responses were generated after boosting with MVA. CD8+ T cell responses, previously found to correlate with protection, were induced in all groups. Antibody responses to EPI vaccines were not altered significantly. CONCLUSION: Malaria vectored prime-boost vaccines co-administered with routine childhood immunizations were well tolerated. Potent humoral and cellular immunity induced by ChAd63 MVA ME-TRAP did not reduce the immunogenicity of co-administered EPI vaccines, supporting further evaluation of this regimen in infant populations. CLINICAL TRIAL REGISTRATION: The clinical trial was registered on http://Clinicaltrials.gov (NCT02083887) and the Pan-African Clinical Trials Registry (PACTR201402000749217)

    Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation.

    Get PDF
    Funder: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)Genomic evolution, transmission and pathogenesis of Streptococcus pneumoniae, an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate within-host microevolution of naturally carried pneumococci in ninety-eight infants intensively sampled sequentially from birth until twelve months in a high-carriage African setting. We show that neutral evolution and nucleotide substitution rates up to forty-fold faster than observed over longer timescales in S. pneumoniae and other bacteria drives high within-host pneumococcal genetic diversity. Highly divergent co-existing strain variants emerge during colonisation episodes through real-time intra-host homologous recombination while the rest are co-transmitted or acquired independently during multiple colonisation episodes. Genic and intergenic parallel evolution occur particularly in antibiotic resistance, immune evasion and epithelial adhesion genes. Our findings suggest that within-host microevolution is rapid and adaptive during natural colonisation

    Carriage Dynamics of Pneumococcal Serotypes in Naturally Colonized Infants in a Rural African Setting During the First Year of Life.

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) carriage precedes invasive disease and influences population-wide strain dynamics, but limited data exist on temporal carriage patterns of serotypes due to the prohibitive costs of longitudinal studies. Here, we report carriage prevalence, clearance and acquisition rates of pneumococcal serotypes sampled from newborn infants bi-weekly from weeks 1 to 27, and then bi-monthly from weeks 35 to 52 in the Gambia. We used sweep latex agglutination and whole genome sequencing to serotype the isolates. We show rapid pneumococcal acquisition with nearly 31% of the infants colonized by the end of first week after birth and quickly exceeding 95% after 2 months. Co-colonization with multiple serotypes was consistently observed in over 40% of the infants at each sampling point during the first year of life. Overall, the mean acquisition time and carriage duration regardless of serotype was 38 and 24 days, respectively, but varied considerably between serotypes comparable to observations from other regions. Our data will inform disease prevention and control measures including providing baseline data for parameterising infectious disease mathematical models including those assessing the impact of clinical interventions such as pneumococcal conjugate vaccines

    Short-term increase in prevalence of nasopharyngeal carriage of macrolide-resistant Staphylococcus aureus following mass drug administration with azithromycin for trachoma control.

    Get PDF
    BACKGROUND: Mass drug administration (MDA) with azithromycin is a corner-stone of trachoma control however it may drive the emergence of antimicrobial resistance. In a cluster-randomized trial (Clinical trial gov NCT00792922), we compared the reduction in the prevalence of active trachoma in communities that received three annual rounds of MDA to that in communities that received a single treatment round. We used the framework of this trial to carry out an opportunistic study to investigate if the increased rounds of treatment resulted in increased prevalence of nasopharyngeal carriage of macrolide-resistant Staphylococcus aureus. Three cross-sectional surveys were conducted in two villages receiving three annual rounds of MDA (3 × treatment arm). Surveys were conducted immediately before the third round of MDA (CSS-1) and at one (CSS-2) and six (CSS-3) months after MDA. The final survey also included six villages that had received only one round of MDA 30 months previously (1 × treatment arm). RESULTS: In the 3 × treatment arm, a short-term increase in prevalence of S. aureus carriage was seen following MDA from 24.6% at CSS-1 to 38.6% at CSS-2 (p < 0.001). Prevalence fell to 8.8% at CSS-3 (p < 0.001). A transient increase was also seen in prevalence of carriage of azithromycin resistant (Azm(R)) strains from 8.9% at CSS-1 to 34.1% (p < 0.001) in CSS-2 and down to 7.3% (p = 0.417) in CSS-3. A similar trend was observed for prevalence of carriage of macrolide-inducible-clindamycin resistant (iMLSB) strains. In CSS-3, prevalence of carriage of resistant strains was higher in the 3 × treatment arm than in the 1 × treatment (Azm(R) 7.3% vs. 1.6%, p = 0.010; iMLSB 5.8% vs. 0.8%, p < 0.001). Macrolide resistance was attributed to the presence of msr and erm genes. CONCLUSIONS: Three annual rounds of MDA with azithromycin were associated with a short-term increase in both the prevalence of nasopharyngeal carriage of S. aureus and prevalence of carriage of Azm(R) and iMLSB S. aureus. TRIAL REGISTRATION: This study was ancillary to the Partnership for the Rapid Elimination of Trachoma, ClinicalTrials.gov NCT00792922 , registration date November 17, 2008

    Data for: "Does azithromycin given to women in labour decrease ocular bacterial infection in neonates? A double-blind, randomized trial"

    Get PDF
    Raw data associated with the Prevention of Bacterial Infections in Newborn (PregnAnZI) study, a phase III, double-blind, randomized trial that sought to assess the effect of administering a single dose of oral azithromycin to women in labour on bacterial colonization of the neonate. The raw data supporting the findings of the study, as outlined in the accompanying BMC Infectious Diseases paper, are available upon request following ethical approval by the local ethics committee. For any query Anna Roca, the corresponding author, can be contacted
    corecore