77 research outputs found

    Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds

    Get PDF
    Among the wide range of strategies to target skin repair/regeneration, tissue engineering (TE) with stem cells at the forefront, remains as the most promising route. Cell sheet (CS) engineering is herein proposed, taking advantage of particular cell-cell and cell-extracellular matrix (ECM) interactions and subsequent cellular milieu, to create 3D TE constructs to promote full-thickness skin wound regeneration. Human adipose derived stem cells (hASCs) CS were obtained within five days using both thermoresponsive and standard cell culture surfaces. hASCs-based constructs were then built by superimposing three CS and transplanted into full-thickness excisional mice skin wounds with delayed healing. Constructs obtained using thermoresponsive surfaces were more stable than the ones from standard cell culture surfaces due to the natural adhesive character of the respective CS. Both CS-generating strategies lead to prolonged hASCs engraftment, although no transdifferentiation phenomena were observed. Moreover, our findings suggest that the transplanted hASCs might be promoting neotissue vascularization and extensively influencing epidermal morphogenesis, mainly through paracrine actions with the resident cells. The thicker epidermis, with a higher degree of maturation characterized by the presence of rete ridges-like structures, as well as a significant number of hair follicles observed after transplantation of the constructs combining the CS obtained from the thermoresponsive surfaces, reinforced the assumptions of the influence of the transplanted hASCs and the importance of the higher stability of these constructs promoted by cohesive cell-cell and cell-ECM interactions. Overall, this study confirmed the potential of hASCs CS-based constructs to treat full-thickness excisional skin wounds and that their fabrication conditions impact different aspects of skin regeneration, such as neovascularisation, but mainly epidermal morphogenesis.We would like to thank Hospital da Prelada (Porto), in particular, to Dr. Paulo Costa for the lipoaspirates collection and for financial support by Skingineering (PTDC/SAU-OSM/099422/2008), Portuguese Foundation for Science and Technology (FCT) funded project. The research leading to these results has also received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. REGPOT-CT2012-316331-POLARIS

    Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Get PDF
    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed

    NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies

    Get PDF
    NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available

    A systems radiation biology approach to unravel the role of chronic low-dose-rate gamma-irradiation in inducing premature senescence in endothelial cells.

    No full text
    PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence
    corecore