5,431 research outputs found

    Rota-Baxter algebras and new combinatorial identities

    Full text link
    The word problem for an arbitrary associative Rota-Baxter algebra is solved. This leads to a noncommutative generalization of the classical Spitzer identities. Links to other combinatorial aspects, particularly of interest in physics, are indicated.Comment: 8 pages, improved versio

    Generalized shuffles related to Nijenhuis and TD-algebras

    Full text link
    Shuffle and quasi-shuffle products are well-known in the mathematics literature. They are intimately related to Loday's dendriform algebras, and were extensively used to give explicit constructions of free commutative Rota-Baxter algebras. In the literature there exist at least two other Rota-Baxter type algebras, namely, the Nijenhuis algebra and the so-called TD-algebra. The explicit construction of the free unital commutative Nijenhuis algebra uses a modified quasi-shuffle product, called the right-shift shuffle. We show that another modification of the quasi-shuffle product, the so-called left-shift shuffle, can be used to give an explicit construction of the free unital commutative TD-algebra. We explore some basic properties of TD-operators and show that the free unital commutative Nijenhuis algebra is a TD-algebra. We relate our construction to Loday's unital commutative dendriform trialgebras, including the involutive case. The concept of Rota-Baxter, Nijenhuis and TD-bialgebras is introduced at the end and we show that any commutative bialgebra provides such objects.Comment: 20 pages, typos corrected, accepted for publication in Communications in Algebr

    Combinatorics of renormalization as matrix calculus

    Get PDF
    We give a simple presentation of the combinatorics of renormalization in perturbative quantum field theory in terms of triangular matrices. The prescription, that may be of calculational value, is derived from first principles, to wit, the ``Birkhoff decomposition'' in the Hopf-algebraic description of renormalization by Connes and Kreimer.Comment: 10 pages, revised version, typos corrected, to appear in Phys. Lett.

    Exponential renormalization

    Full text link
    Moving beyond the classical additive and multiplicative approaches, we present an "exponential" method for perturbative renormalization. Using Dyson's identity for Green's functions as well as the link between the Faa di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota-Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counterfactors and of order n bare coupling constants).Comment: revised version; accepted for publication in Annales Henri Poincar

    Mixable Shuffles, Quasi-shuffles and Hopf Algebras

    Full text link
    The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota-Baxter algebras.Comment: 14 pages, no figure, references update

    Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT

    Full text link
    In this article we continue to explore the notion of Rota-Baxter algebras in the context of the Hopf algebraic approach to renormalization theory in perturbative quantum field theory. We show in very simple algebraic terms that the solutions of the recursively defined formulae for the Birkhoff factorization of regularized Hopf algebra characters, i.e. Feynman rules, naturally give a non-commutative generalization of the well-known Spitzer's identity. The underlying abstract algebraic structure is analyzed in terms of complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure

    Renormalization: a quasi-shuffle approach

    Full text link
    In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process

    Post-Lie Algebras, Factorization Theorems and Isospectral-Flows

    Full text link
    In these notes we review and further explore the Lie enveloping algebra of a post-Lie algebra. From a Hopf algebra point of view, one of the central results, which will be recalled in detail, is the existence of a second Hopf algebra structure. By comparing group-like elements in suitable completions of these two Hopf algebras, we derive a particular map which we dub post-Lie Magnus expansion. These results are then considered in the case of Semenov-Tian-Shansky's double Lie algebra, where a post-Lie algebra is defined in terms of solutions of modified classical Yang-Baxter equation. In this context, we prove a factorization theorem for group-like elements. An explicit exponential solution of the corresponding Lie bracket flow is presented, which is based on the aforementioned post-Lie Magnus expansion.Comment: 49 pages, no-figures, review articl

    Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion

    Full text link
    We describe a unification of several apparently unrelated factorizations arisen from quantum field theory, vertex operator algebras, combinatorics and numerical methods in differential equations. The unification is given by a Birkhoff type decomposition that was obtained from the Baker-Campbell-Hausdorff formula in our study of the Hopf algebra approach of Connes and Kreimer to renormalization in perturbative quantum field theory. There we showed that the Birkhoff decomposition of Connes and Kreimer can be obtained from a certain Baker-Campbell-Hausdorff recursion formula in the presence of a Rota-Baxter operator. We will explain how the same decomposition generalizes the factorization of formal exponentials and uniformization for Lie algebras that arose in vertex operator algebra and conformal field theory, and the even-odd decomposition of combinatorial Hopf algebra characters as well as to the Lie algebra polar decomposition as used in the context of the approximation of matrix exponentials in ordinary differential equations.Comment: accepted for publication in Comm. in Math. Phy
    • …
    corecore