5,431 research outputs found
Rota-Baxter algebras and new combinatorial identities
The word problem for an arbitrary associative Rota-Baxter algebra is solved.
This leads to a noncommutative generalization of the classical Spitzer
identities. Links to other combinatorial aspects, particularly of interest in
physics, are indicated.Comment: 8 pages, improved versio
Generalized shuffles related to Nijenhuis and TD-algebras
Shuffle and quasi-shuffle products are well-known in the mathematics
literature. They are intimately related to Loday's dendriform algebras, and
were extensively used to give explicit constructions of free commutative
Rota-Baxter algebras. In the literature there exist at least two other
Rota-Baxter type algebras, namely, the Nijenhuis algebra and the so-called
TD-algebra. The explicit construction of the free unital commutative Nijenhuis
algebra uses a modified quasi-shuffle product, called the right-shift shuffle.
We show that another modification of the quasi-shuffle product, the so-called
left-shift shuffle, can be used to give an explicit construction of the free
unital commutative TD-algebra. We explore some basic properties of TD-operators
and show that the free unital commutative Nijenhuis algebra is a TD-algebra. We
relate our construction to Loday's unital commutative dendriform trialgebras,
including the involutive case. The concept of Rota-Baxter, Nijenhuis and
TD-bialgebras is introduced at the end and we show that any commutative
bialgebra provides such objects.Comment: 20 pages, typos corrected, accepted for publication in Communications
in Algebr
Combinatorics of renormalization as matrix calculus
We give a simple presentation of the combinatorics of renormalization in
perturbative quantum field theory in terms of triangular matrices. The
prescription, that may be of calculational value, is derived from first
principles, to wit, the ``Birkhoff decomposition'' in the Hopf-algebraic
description of renormalization by Connes and Kreimer.Comment: 10 pages, revised version, typos corrected, to appear in Phys. Lett.
Exponential renormalization
Moving beyond the classical additive and multiplicative approaches, we
present an "exponential" method for perturbative renormalization. Using Dyson's
identity for Green's functions as well as the link between the Faa di Bruno
Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the
composition of formal power series is analyzed. Eventually, we argue that the
new method has several attractive features and encompasses the BPHZ method. The
latter can be seen as a special case of the new procedure for renormalization
scheme maps with the Rota-Baxter property. To our best knowledge, although very
natural from group-theoretical and physical points of view, several ideas
introduced in the present paper seem to be new (besides the exponential method,
let us mention the notions of counterfactors and of order n bare coupling
constants).Comment: revised version; accepted for publication in Annales Henri Poincar
Mixable Shuffles, Quasi-shuffles and Hopf Algebras
The quasi-shuffle product and mixable shuffle product are both
generalizations of the shuffle product and have both been studied quite
extensively recently. We relate these two generalizations and realize
quasi-shuffle product algebras as subalgebras of mixable shuffle product
algebras. As an application, we obtain Hopf algebra structures in free
Rota-Baxter algebras.Comment: 14 pages, no figure, references update
Spitzer's Identity and the Algebraic Birkhoff Decomposition in pQFT
In this article we continue to explore the notion of Rota-Baxter algebras in
the context of the Hopf algebraic approach to renormalization theory in
perturbative quantum field theory. We show in very simple algebraic terms that
the solutions of the recursively defined formulae for the Birkhoff
factorization of regularized Hopf algebra characters, i.e. Feynman rules,
naturally give a non-commutative generalization of the well-known Spitzer's
identity. The underlying abstract algebraic structure is analyzed in terms of
complete filtered Rota-Baxter algebras.Comment: 19 pages, 2 figure
Renormalization: a quasi-shuffle approach
In recent years, the usual BPHZ algorithm for renormalization in perturbative
quantum field theory has been interpreted, after dimensional regularization, as
a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs,
with values in a Rota-Baxter algebra of amplitudes. We associate in this paper
to any such algebra a universal semi-group (different in nature from the
Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes
associated to Feynman graphs produces the expected operations: Bogoliubov's
preparation map, extraction of divergences, renormalization. In this process a
key role is played by commutative and noncommutative quasi-shuffle bialgebras
whose universal properties are instrumental in encoding the renormalization
process
Post-Lie Algebras, Factorization Theorems and Isospectral-Flows
In these notes we review and further explore the Lie enveloping algebra of a
post-Lie algebra. From a Hopf algebra point of view, one of the central
results, which will be recalled in detail, is the existence of a second Hopf
algebra structure. By comparing group-like elements in suitable completions of
these two Hopf algebras, we derive a particular map which we dub post-Lie
Magnus expansion. These results are then considered in the case of
Semenov-Tian-Shansky's double Lie algebra, where a post-Lie algebra is defined
in terms of solutions of modified classical Yang-Baxter equation. In this
context, we prove a factorization theorem for group-like elements. An explicit
exponential solution of the corresponding Lie bracket flow is presented, which
is based on the aforementioned post-Lie Magnus expansion.Comment: 49 pages, no-figures, review articl
Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion
We describe a unification of several apparently unrelated factorizations
arisen from quantum field theory, vertex operator algebras, combinatorics and
numerical methods in differential equations. The unification is given by a
Birkhoff type decomposition that was obtained from the Baker-Campbell-Hausdorff
formula in our study of the Hopf algebra approach of Connes and Kreimer to
renormalization in perturbative quantum field theory. There we showed that the
Birkhoff decomposition of Connes and Kreimer can be obtained from a certain
Baker-Campbell-Hausdorff recursion formula in the presence of a Rota-Baxter
operator. We will explain how the same decomposition generalizes the
factorization of formal exponentials and uniformization for Lie algebras that
arose in vertex operator algebra and conformal field theory, and the even-odd
decomposition of combinatorial Hopf algebra characters as well as to the Lie
algebra polar decomposition as used in the context of the approximation of
matrix exponentials in ordinary differential equations.Comment: accepted for publication in Comm. in Math. Phy
- …