23 research outputs found

    Observation of triple J/ψ meson production in proton-proton collisions

    No full text
    Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272−104+141(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    No full text
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1fb

    Measurement of the tt¯ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV

    Evidence for four-top quark production in proton-proton collisions at s=13TeV

    No full text
    The production of four top quarks (tt¯tt¯) is studied with LHC proton-proton collision data samples collected by the CMS experiment at a center-of-mass energy of 13 TeV, and corresponding to integrated luminosities of up to 138fb−1. Events that have no leptons (all-hadronic), one lepton, or two opposite-sign leptons (where lepton refers only to prompt electrons or prompt muons) are considered. This is the first tt¯tt¯ measurement that includes the all-hadronic final state. The observed significance of the tt¯tt¯ signal in these final states of 3.9 standard deviations (1.5 expected) provides evidence for tt¯tt¯ production, with a measured cross section of 36−11+12fb. Combined with earlier CMS results in other final states, the signal significance is 4.0 standard deviations (3.2 expected). The combination returns an observed cross section of 17±4(stat)±3(syst)fb, which is consistent with the standard model prediction

    Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the <math display="inline"><mi>τ</mi><mi>τ</mi></math> final state

    No full text
    International audienceA study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138  fb-1. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions

    Measurement of the Bs0→μ+μ− decay properties and search for the B0 → μ+μ− decay in proton-proton collisions at s=13TeV

    No full text
    Measurements are presented of the Bs0→μ+μ− branching fraction and effective lifetime, as well as results of a search for the B0→μ+μ− decay in proton-proton collisions at s=13TeV at the LHC. The analysis is based on data collected with the CMS detector in 2016–2018 corresponding to an integrated luminosity of 140fb−1. The branching fraction of the Bs0→μ+μ− decay and the effective Bs0 meson lifetime are the most precise single measurements to date. No evidence for the B0→μ+μ− decay has been found. All results are found to be consistent with the standard model predictions and previous measurements

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext
    corecore