23 research outputs found

    Categorical Modeling of the Flow Pattern of Liquid Organic Compounds Between Blade Electrodes Using Semiempirical and ab initio Quantum Chemical Descriptors

    Get PDF
    For a data set of 30 organic fluids, categorical modeling has been employed to predict the flow pattern under an external electric field. To this end, a previously generated data set was augmented by 10 compounds with new experimental results, and quantum chemical methods have been used to characterize the geometric and electronic structure of the molecules on both the semiempirical and ab initio levels of theory. Both linear discriminant analysis (LDA) and binary logistic regression (BLR) have been employed to model the flow rate (high vs. low) and flow direction (left vs. right). For the flow rate, good LDA and BLR calibration statistics using the dipole moment, hydrophobicity and some charged partial surface area (CPSA) descriptors is accompanied with moderate prediction statistics, as evaluated through simulated external validation, and activity scrambling shows that chance correlation is not relevant. Additional neural network analyses yielded no stable models due to constraints imposed by the data set size. For the flow direction, LDA and BLR calibration and prediction statistics show more variation among the different models generated, with an overall performance inferior to the one for the flow rate. Here, besides CPSA descriptors, two parameters characterizing the softness of the electronic structure are involved. In general, BLR is slightly superior to LDA for both properties. The results are discussed in terms of contingency table statistics and with respect to the mechanistic meaning of molecular descriptors

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    Prediction of Physicochemical Properties of Organic Compounds from 2D Molecular Structure – Fragment Methods vs. LFER Models

    Get PDF
    A large number of models is available to predict physicochemical properties directly from the two-dimensional molecular structure. An alternative to conventional fragment methods is given by linear free-energy relationships (LFERs) employing Abraham parameters. The latter have a solid mechanistic background, but a drawback in practice is the limited availability of Abraham parameters for substances of interest. As a consequence, more complex compounds typically require the estimation of Abraham parameters from the chemical structure. Comparative analysis of prediction methods for Henry's law constant and sorption to soil organic matter shows that at present, fragment methods are superior to the LFER approach when employing calculated Abraham parameters. For the subset of typically more simple compounds with experimental Abraham parameters, the respective LFERs are competitive to general-purpose fragment models. The discussion includes analyses of compound subsets without and with hydrogen bond functionalities, and of the impact of structural complexity on the model performance

    Henry’s Law ConstantA General-Purpose Fragment Model to Predict Log <i>K</i><sub>aw</sub> from Molecular Structure

    No full text
    Henry’s law constant is important for assessing the environmental fate of organic compounds, including polar accumulation, indoor contamination, and the impact of airborne predominance on persistence. Moreover, it can be used in the context of alternative 3R bioassays to inform about the compound loss through volatilization as a confounding factor. For 2636 compounds, curated experimental log Kaw (air/water partition coefficient) data at 25° covering 23.6 orders of magnitude (from −18.6 to 5.0) have been collected from the literature. Subsequently, a new fragment model for predicting log Kaw from molecular structures has been developed. According to the root-mean-squared error (rms) and the maximum negative and positive errors (mne and mpe), this general-purpose model outperforms COSMOtherm, EPISuite HENRYWIN, OPERA, and LSER with calculated input parameters significantly (rms 0.50 vs 0.92 vs 1.25 vs 1.28 vs 1.38, mne −2.74 vs −6.78 vs −9.11 vs −6.24 vs −6.27, mpe 2.25 vs 6.22 vs 8.27 vs 11.5 vs 7.69 log units). Initial separation into a training and prediction set (80%:20%), mutual leave-50%-out validation, and target value scrambling (temporarily wrong compound-Kaw allocations) demonstrate the prediction capability, statistical robustness, and mechanistically sound basis of the fragment scheme. The new model is available to the public in fully computerized form through the ChemProp software, and can be combined with a separate existing model to extend the log Kaw prediction to temperatures different from 25 °C

    Sea breeze thunderstorms in the eastern Iberian Peninsula. Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts

    Get PDF
    In this study we investigated sea breeze thunderstorms with intense convective activity (i.e., heavy rainfall, hail and gusty winds) that occurred over the eastern Iberian Peninsula (Spain) and were missed by the operational HIRLAM model. We used two grid-spacing setups (5.0. km and 2.5. km) of the hydrostatic HIRLAM model, and the non-hydrostatic spectral HARMONIE suite (2.5. km), to simulate isolated convection associated with sea breezes. The overall aim is to estimate the ability of these three experimental setups, in particular the HARMONIE model as the forthcoming operational numerical weather prediction in most European Weather Services, to correctly simulate convective precipitation associated with sea breezes. We evaluated high-resolution gridded precipitation forecasts from HIRLAM and HARMONIE suites for 15 sea breeze thunderstorms against high-density gridded raingauge measurements applying different neighborhood verification techniques. The results indicate that higher horizontal resolutions of HIRLAM and HARMONIE models succeeded in predicting the occurrence of these missed sea breeze thunderstorms, the HARMONIE suite being the most capable of providing good estimates of accumulated precipitation in convective events in terms of space and time. Advances in quantitative precipitation forecasting of locally driven convection could have practical applications for nowcasting dangerous sea breeze convective phenomena. © 2014 Elsevier B.V.The authors wish to acknowledge the editor and two anonymous reviewers for their detailed and helpful comments to the original manuscript. This research was undertaken in the frame of the BEST/2010/014 (GV), the JAE-DOC043 (CSIC; European Social Fund, FSE) and the JCI-2011-10263 grants. This research was supported by the projects CGL2011-27574-C02-02 and CGL2011-27536/HID, financed by the Spanish Commission of Science and Technology, and FEDER; ACQWA (FP7-ENV-2008-1-212250), financed by the European Commission; “Efecto de los escenarios de cambio climático sobre la hidrología superficial y la gestión de embalses del Pirineo Aragonés”, financed by “Obra Social La Caixa”; and CTTP1/12 “Creación de un modelo de alta resolución espacial para cuantificar la esquiabilidad y la afluencia turística en el Pirineo bajo distintos escenarios de cambio climático”, financed by the “Comunidad de Trabajo de los Pirineos”. The authors would like to thank the AEMET, CEAM, CHE, CHJ, IVIA, METEOCLIMATIC, SIAM, SIAR and SMC for raingauge data; and to José-Antonio García-Moya and Estrella Gutiérrez-Marco (AEMET) for providing the HIRLAM 6.1.2 outputs.Peer Reviewe
    corecore