433 research outputs found

    Literature search – Exploring in silico protein toxicity prediction methods to support the food and feed risk assessment

    Get PDF
    This report is the outcome of an EFSA procurement (NP/EFSA/GMO/2018/01) reviewing relevant scientific information on in silico prediction methods for protein toxicity, that could support the food and feed risk assessment. Several proteins are associated with adverse (toxic) effects in humans and animals, by a variety of mechanisms. These are produced by plants, animals and bacteria to prevail in hostile environments. In the present report, we present an integrated pipeline to perform a comprehensive literature and database search applied to proteins with toxic effects. \u201cToxin activity\u201d and \u201ctoxin-antitoxin system\u201d strings were used as inputs for this pipeline. UniProtKB was considered as the reference database, and only the UniProtKB curator-reviewed proteins were considered in the pipeline. Experimentally- determined structures and homology-based in silico 3D models were retrieved from protein structures repositories; family-, domain-, motif- and other molecular signature-related information was also obtained from specific databases which are part of the InterPro consortium. Protein aggregation associated with adverse effects was also investigated using different search strategies. This work can serve as the basis for further exploring novel risk assessment strategies for new proteins using in silico predictive methods

    Glatiramer acetate : a complex drug beyond biologics

    Get PDF
    Complex drugs may be either biological, if the active ingredients are derived from a biological source, or non-biological, if obtained by chemical synthesis. In both cases, their quality depends considerably on the manufacturing process. In the case of Non Biological Complex Drugs (NBCDs), complexity may arise either from the active substance, as in the case of glatiramer acetate, or from other sources, such as the formulation, as in the case of liposomes. In this paper, the case of glatiramer acetate (GA) - a NBCD relevant for clinical and economic reasons - is considered and the differences between US and EU regulatory approaches to GA marketing authorization are highlighted. Indeed, though US and EU regulatory agencies have chosen a generic approach integrated with additional data the implementation is different in the two jurisdictions. In the US, the additional data required are listed in a product specific guideline and copies of Copaxone\uae have been approved as generics. In the EU, instead regulatory agencies followed a hybrid approach requiring an additional comparative study, and interchangeability policies and substitution schemes have been left to national agencies

    some more about dogs proteomics of neglected biological fluids

    Get PDF
    Abstract We report in this manuscript what is known about the protein makeup of a selection of biological fluids in the domestic dog. The samples we review – amniotic and allantoic fluid, seminal fluid, saliva, bile, synovial fluid, tears – are still very poorly characterized in this species. For some of them we can present results from our own, mainly unpublished experiments. Significance The dog is one of the most widespread companion animals, and also of medical relevance as model species for some human diseases. Still, investigation of body fluids other than serum and urine is not so commonly undertaken, although – like in humans - also these sample types may have potential for diagnostic purposes. We compile published data about proteomes of fetal fluids, seminal plasma, saliva, bile, synovial fluid and tears, enriched by some yet unpublished data of our own (proteins of amniotic and allantoic fluid, tears). Closing gaps in our knowledge on dog proteins will further our understanding of (patho)physiological processes

    What if? Mouse proteomics after gene inactivation

    Get PDF
    The complex interactions among proteins and of proteins with small molecular weight protein ligands are overturned every time one of the components of the network is missing. For study purposes, animal models lacking one protein are obtained by experimental manipulation of the genome: in the knocking out approach, a gene is altered through the insertion of an artificial DNA sequence, which halts the transcription-translation sequence of events. In this review we have compiled the research papers that analyze the effects of knocking out individual genes on the proteomes of various tissues/organs throughout the body. We have gathered and organized all the available evidence and then compared the proteomic data in order to stress the context-specificity of the outcome every time two or more organs were investigated in the same KO mice. Finally, in a symmetrical approach to the above, we surveyed whether there is any obvious overlap among the effects of different KO on the same organ, marking affection of general pathways or lacking specificity of the gene targeting. Specific attention was put on the possible involvement of cellular stress markers

    Novel insights into the transport mechanism of the human amino acid transporter LAT1 (SLC7A5) : probing critical residues for substrate translocation

    Get PDF
    BACKGROUND: LAT1 (SLC7A5) is the transport competent unit of the heterodimer formed with the glycoprotein CD98 (SLC3A2). It catalyzes antiport of His and some neutral amino acids such as Ile, Leu, Val, Cys, Met, Gln and Phe thus being involved in amino acid metabolism. Interestingly, LAT1 is over-expressed in many human cancers that are characterized by increased demand of amino acids. Therefore LAT1 was recently acknowledged as a novel target for cancer therapy. However, knowledge on molecular mechanism of LAT1 transport is still scarce. METHODS: Combined approaches of bioinformatics, site-directed mutagenesis, chemical modification, and transport assay in proteoliposomes, have been adopted to unravel dark sides of human LAT1 structure/function relationships. RESULTS: It has been demonstrated that residues F252, S342, C335 are crucial for substrate recognition and C407 plays a minor role. C335 and C407 cannot be targeted by SH reagents. The transporter has a preferential dimeric structure and catalyzes an antiport reaction which follows a simultaneous random mechanism. CONCLUSIONS: Critical residues of the substrate binding site of LAT1 have been probed. This site is not freely accessible by molecules other than substrate. Similarly to LeuT, K+ has some regulatory properties on LAT1. GENERAL SIGNIFICANCE: The collected data represent a solid basis for deciphering molecular mechanism underlying LAT1 function

    Development of an adverse outcome pathway for cranio-facial malformations: A contribution from in silico simulations and in vitro data

    Get PDF
    Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two converging AOPs

    Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes

    Get PDF
    Background: Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes.Results: Recombinant S. cerevisiae BY4741{increment}Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, α-methyl-trans-cinnamaldehyde, and trans-β-methyl-β-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity.Conclusions: The OYE biocatalysts, based on recombinant S. cerevisiae expressing OYE genes from non-conventional yeasts, were able to differently reduce the activated double bond of enones, enals and nitro-olefins, exhibiting a wide range of substrate specificity. Moreover whole-cells biocatalysts bypassed the necessity of the cofactor recycling and, tuning reaction parameters, allowed the synthetic exploitation of endogenous carbonyl reductases. Molecular modeling studies highlighted key structural features for further improvement of catalytic properties of OYE enzymes

    Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes

    Get PDF
    Background: Old Yellow Enzymes (OYEs) are flavin-dependent enoate reductases (EC 1.6.99.1) that catalyze the stereoselective hydrogenation of electron-poor alkenes. Their ability to generate up to two stereocenters by the trans-hydrogenation of the C = C double bond is highly demanded in asymmetric synthesis. Isolated redox enzymes utilization require the addition of cofactors and systems for their regeneration. Microbial whole-cells may represent a valid alternative combining desired enzymatic activity and efficient cofactor regeneration. Considerable efforts were addressed at developing novel whole-cell OYE biocatalysts, based on recombinant Saccharomyces cerevisiae expressing OYE genes.Results: Recombinant S. cerevisiae BY4741{increment}Oye2 strains, lacking endogenous OYE and expressing nine separate OYE genes from non-conventional yeasts, were used as whole-cell biocatalysts to reduce substrates with an electron-poor double bond activated by different electron-withdrawing groups. Ketoisophorone, \u3b1-methyl-trans-cinnamaldehyde, and trans-\u3b2-methyl-\u3b2-nitrostyrene were successfully reduced with high rates and selectivity. A series of four alkyl-substituted cyclohex-2-enones was tested to check the versatility and efficiency of the biocatalysts. Reduction of double bond occurred with high rates and enantioselectivity, except for 3,5,5-trimethyl-2-cyclohexenone. DFT (density functional theory) computational studies were performed to investigate whether the steric hindrance and/or the electronic properties of the substrates were crucial for reactivity. The three-dimensional structure of enoate reductases from Kluyveromyces lodderae and Candida castellii, predicted through comparative modeling, resulted similar to that of S. cerevisiae OYE2 and revealed the key role of Trp116 both in substrate specificity and stereocontrol. All the modeling studies indicate that steric hindrance was a major determinant in the enzyme reactivity.Conclusions: The OYE biocatalysts, based on recombinant S. cerevisiae expressing OYE genes from non-conventional yeasts, were able to differently reduce the activated double bond of enones, enals and nitro-olefins, exhibiting a wide range of substrate specificity. Moreover whole-cells biocatalysts bypassed the necessity of the cofactor recycling and, tuning reaction parameters, allowed the synthetic exploitation of endogenous carbonyl reductases. Molecular modeling studies highlighted key structural features for further improvement of catalytic properties of OYE enzymes
    • …
    corecore