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Abstract 
 

The complex interactions among proteins and of proteins with small molecular 
weight protein ligands are overturned every time one of the components of the 

network is missing. For study purposes, animal models lacking one protein 
are obtained by experimental manipulation of the genome: in the knocking out 
approach, a gene is altered through the insertion of an artificial DNA 

sequence, which halts the transcription-translation sequence of events. 
In this review we have compiled the research papers that analyze the effects 

of knocking out individual genes on the proteomes of various tissues/organs 
throughout the body. We have gathered and organized all the available 
evidence and then compared the proteomic data in order to stress the 

context-specificity of the outcome every time two or more organs were 
investigated in the same KO mice. Finally, in a symmetrical approach to the 

above, we surveyed whether there is any obvious overlap among the effects 
of different KO on the same organ, marking affection of general pathways or 
lacking specificity of the gene targeting. Specific attention was put on the 

possible involvement of cellular stress markers. 
 

 
Keywords 
 

KO mice; systemic knock-out; conditional knock-out; tissue-specific outcome  
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1 Foreword 
 

Almost 15 years ago we were involved in a study with transgenic mice whose 
serum apolipoprotein A-I (apo A-I) had been knocked out and who instead 

produced the human homologue. In a proteomic study applying 2-DE, we 
found out that apo A-I was not the only protein altered, as serum protein 
levels of alpha1-acid glycoprotein, alpha1-macroglobulin, esterase, kininogen 

and contrapsin were significantly different between those knock-outs and their 
transgenic counterparts [1]. Since then, both the genetic and proteomic 

methods have developed further, and the use of genetically modified animals 
has become more widespread. Thus, knock-out (KO) mice are used as a tool 
to investigate the function(s) of the product(s) of each individual gene by 

observing the changes occurring in each one-less genetic setup. 
The National Institutes of Health (NIH) launched in 2004 the Knockout Mouse 

Project (KOMP) with the aim of generating a comprehensive and public 
resource of animals containing a null mutation in every gene in the mouse 
genome [2]. The mouse strain C57BL/6 was selected as the common 

background for this catalog of mutants as its complete genome sequence is 
available (http://www.informatics.jax.org). An International Mouse 

Phenotyping Consortium (IMPC) (http://www.mousephenotype.org), which 
integrates 18 research institutions and 5 national funders across North 
America, Europe and Asia, took charge of implementing the project. One of 

the main actions carried out inside the Consortium is to produce and then test 
each mutant mouse line through a broad primary phenotyping pipeline across 

all the major anatomical structures in adult organisms 
(http://www.mousephenotype.org/impress/procedures/7).  
In the inventory of the checks, collection of a standardized list of tissues is 

meant for fixation (and, when relevant, for microscopic examination). 
Assessment of gene expression pattern hence of protein synthesis in 

embryos and adults is not a mandatory step of the phenotyping pipeline and, 
when carried out, only addresses the null-mutated gene through its 
replacement with a reporter (i.e. with bacterial LacZ, to be then stained for on 

histological sections). Because of its cost, a wider survey on gene expression 
by transcriptome profiling of tissues via array technology was initially 

advocated “on a subset of mice, chosen by peer review” [2]; currently, 
however, it is included neither in the core procedures of the Consortium nor in 
the extra parameters some of the participating institutions are assessing 

(https://www.mousephenotype.org/impress/pipelines). 
Within this initiative, no proteomic investigation standardized in its procedures 

and systematic in its scope was ever planned, or even advocated, on the 
knockout mouse specimens. Individual investigations were instead carried out,  
and still are, according to different experimental paradigms, and addressing 

different tissue proteomes, both in the institutions taking part in the 
Consortium and outside. In the following we’ll try to provide an overview on 

these efforts.  
 
The first aim of our review is to gather all the available evidence and to 

organize it with reference to the topographic origin of the samples (organ in a 
system, organelle in a cell). A second aim of our writing is to compare the 

proteomic data and to stress the context-specificity of the outcome every time 
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two or more organs are investigated in the same KO mice. Finally, in a 
symmetrical approach to the above, a third aim is to survey whether there is 

any obvious overlap among the effects of different KO on the same organ, 
which could be a sign for ‘non-specificity’, i.e. alteration of other than the 

aimed-at protein, or influence on very general cellular or organ-specific 
reactions. As an example, we put specific attention to the possible 
involvement of cellular stress markers.  

 
The title of this review echoes the name of a computer program for molecular 

modeling written, as a pioneer in the field, by prof. Anna Tramontano. One 
and a half year after her premature death, all the authors wish to dedicate this 
writing to the beloved memory of a great scientist and of a dear friend. 

 
 

2 Gene inactivation procedures 
 
Gene inactivation may be arrived at in several ways, which we’ll shortly list in 

the following (outline in Figure 1). 
 

A gene may be altered in its structure through the insertion of an artificial DNA 
sequence: this approach is defined knocking out (KO). This aim may be 
accomplished with either a non-specific or with a locus-specific protocol. Gene 

trapping relies on the random insertion in the genome of generic trapping 
cassettes; when this type of insertional mutation occurs in introns, a fusion 

transcript results, encoding a truncated and nonfunctional version of the 
cellular protein and a reporter/selectable marker; the cassette contains, in 
addition, a DNA tag (GTST) for the rapid identification of the disrupted gene. 
Conversely, gene targeting relies on homologous recombination with specific 

constructs that include sequences from the gene exons; the success rate of 

the process can be enhanced through the use of engineered endonucleases. 
Gene targeting can be permanent, or conditional, e.g. when resorting to the 
Cre-Lox technology [3]. In the latter case, deletions at specific sites in the 

DNA are obtained with the Cre protein catalyzing recombination between a 
direct repeat of loxP sites flanking the target gene. To limit all-body 

inactivation as a function of time, Cre expression is triggered by an external 
stimulus (e.g. tetracycline and tamoxifen); conversely, to limit gene 
inactivation as a function of space, Cre coding sequence is engineered under 

the control of a tissue-specific promoter. With either protocol, Cre-Lox 
recombination is able to circumvent embryonic lethality associated with the 

systemic inactivation of some genes. 
All of the protocols involved in the above procedures have long been 
established, and were compiled in textbooks, including those of the ‘Methods 

in Molecular Biology’ series [4-6]. 
The expression of a gene may be reduced by interfering with the cognate 

RNA, or the cognate protein: this approach is defined knocking down. 
RNA interference [7] involves two types of molecules: small interfering RNAs 
(siRNAs) base-pair to their target mRNA and cleave it, preventing its use as a 

translation template, while microRNA (miRNAs) target the 3’-untranslated 
region regions of mRNA, blocking the access of ribosomes for translation. 

Morpholinos have DNA bases attached to a backbone of 
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methylenemorpholine rings linked through phosphorodiamidate groups; they 
form heteroduplexes with mRNA and sterically block the translation machinery 

[8, 9]. Intracellular antibodies (intrabodies) are recombinant antibody 
fragments that bind to target proteins expressed inside the same cell that 

produces them: ER intrabodies interfere with membrane proteins or secretion 
products, cytoplasmic intrabodies with cellular components; with this 
approach, a graded interference can be achieved, and it becomes possible to 

target individual post-translationally modified protein species [10, 11]. 
 

 
3 Which papers to review 
 

Definitely, gene inactivation in mice via knocking out is a central topic in 
current research: searching PubMed with these keywords yields >140,000 

reports, and ~1,000 reviews. Focusing on proteomic investigations, as per the 
aim of this writing, still leaves ~650 papers. To deal with such a mass of 
information, we have to set some inclusion/exclusion criteria. In this account 

we are going to review data on single (not multiple), systemic or tissue-
specific conditional KO (see, however, in Table 14 the outcome of inactivating 

gene families). We’ll disregard investigations comparing KO mice of the same 
line (e.g. apoE KO) exposed to different experimental conditions to 
concentrate, instead, on comparisons between KO and wild-type animals 

(whether under baseline conditions or undergoing the same challenge e.g. 
ischemia/reperfusion, ionizing irradiation, oxidative stress, or receiving the 

same dietary or pharmacological treatment). We’ll stick to proteomics proper 
(neglecting immunoprecipitations in which a null sample acts as a negative 
control, interactomics experiments and cytokine screens). 

Next decision to make is how to organize the contents. In the vast majority of 
cases, it turns out that, even when KO was systemic, the proteome of only 

one tissue was actually analyzed in each null-mutant mouse: this suggests 
itemizing by system and organ (Section 4), and singling out the few instances 
in which more than one sample type was investigated (Section 5). Also, while 

in most cases the whole tissue was processed, in a few instances specific 
sub-proteomes were dealt with: again, the exceptions will be referred to in a 

specific section (Section 6.1). Finally, some reports compare more than one 
mouse model, whether to differentiate between null allele and inhibition or to 
monitor the dose effects between null-mutant, wild-type and transgenic 

animals: also these special cases will be singled out in a specific section 
(Section 6.4). 

 
 
4 Tissues/organs, one by one 

 
Bibliographic lists from our search are presented in tables; rows specify, for 

each item, type/origin of the sample, mode of gene inactivation and, under 
heading KO gene, name of the protein, name of the gene (in parentheses) 
and identifier of the UniProt entry. As a rule, arrangement is by sample type 

(by organ, or by organ region, as for brain, or by experimental treatment, as 
for heart) then by gene (in alphabetical order).  
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4.1 Cardiovascular system 
 

Most reports, listed in Table 1, deal with heart, either under baseline 
conditions or after some kind of experimental injury (e.g. artery ligation). 

 

sample 
geno-
type 

KO gene references 

heart 

S cathepsin L1 (Ctsl) P06797 [12] 

C cullin-3 (Cul3) Q9JLV5 [13] 

S 
estrogen receptor beta 
(Esr2) O08537 

[14]a 

C 
frataxin, mitochondrial (Fxn) 

Q16595 
[15]b 

S galectin-3 (Lgals3) P16110 [16] 

C 
low-density lipoprotein receptor-

related protein 6 (Lrp6) O88572 
[17] 

S myoglobin (Mb) P04247 [18]c 

S 
cardiac phospholamban (Pln) 

P61014 
[19] 

S titin (Ttn) A2ASS6 [20] 

S 
thioredoxin-interacting protein 
(Txnip) Q8BG60 

[21] 

heart (left ventricle) 

 
S 

two pore calcium channel 

protein 1 (Tpcn1) Q9EQJ0 
[22] 

heart 
(decellularized left 
ventricle tissue) 

S 
matrix metalloproteinase-9 
(Mmp9) P41245 

[23]d 

heart (infarcted 

regions)e 

S 

matrilysin, or matrix 

metalloproteinase-7 (Mmp7) 
Q10738 

[24] 

S 
matrix metalloproteinase-9 

(Mmp9) P41245 

[25] 

[26]f 
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heart (ischemia-

reperfusion) 

S 

ATP-binding cassette sub-

family C member 9, or 
sulfonylurea receptor 2 (Abcc9) 
P70170 

[27] 

S 
glutathione peroxidase 1 
(Gpx1) P11352 

[28] 

heartg S 
nitric oxide synthase, 

endothelial (Nos3) P70313 
[29] 

vessels (brain) S 
serine protease HTRA1 (Htra1) 
Q9R118 

[30] 

vascular smooth 
muscle cell 

S 
neutrophil collagenase (Mmp8) 
O70138 

[31] 

Table 1 

legend for genotype: C = conditional KO; S = systemic KO 
a control and pressure overload, male and female mice 
b 4 and 9 weeks old mice 
c under chronic hypoxia (10% O2) 
d 10-16 and 20-24-month old mice 
e from permanent coronary artery ligation 
f  N-glycoproteomics 
g plus or minus endothelin-1 transgene, male and female mice 
 
4.2 Digestive system 

 
Reports dealing with intestine (mainly colon) and pancreas are listed in Table 

2A, whereas the very high number of reports dealing with liver are grouped in 
Table 2B. 
 

sample 
geno-
type 

KO gene references 

jejunum and colon C insulin receptor (Insr) P15208 [32]a 

colon 

S aquaporin-8 (Aqp8) P56404 [33, 34] 

S 
glutathione peroxidase 2 
(Gpx2) Q9JHC0 

[35]b 

C 
retinoblastoma-like protein 1 

(Rbl1) Q64701 
[36] 

pancreas S 
alpha-2A adrenergic receptor 
(Adra2a) Q01338 

[37] 
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S 
alpha-1,3-galactosyltransferase 
2 (A3galt2) Q3V1N9 

[38] 

S aquaporin-8 (Aqp8) P56404 [33] 

C 
ubiquitin carboxyl-terminal 
hydrolase BAP1 (Bap1) 

Q99PU7 

[39] 

Table 2A 
legend for genotype: C = conditional KO; S = systemic KO 
a control chow and high-fat diet 
b Se-deficient or Se-enriched diet (150 μg selenite / kg diet) 
 

sample 
geno-

type 
KO gene references 

liver 

S 
alpha-1,3-galactosyltransferase 
2 (A3galt2) Q3V1N9 

* ** [38] 

S aquaporin-8 (Aqp8) P56404 [33] 

C 
ubiquitin carboxyl-terminal 
hydrolase BAP1 (Bap1) 

Q99PU7 

* ** [39] 

C 

baculoviral IAP repeat-

containing protein 5 (Birc5) 
O70201 

* ** [40]a 

S 
bile salt export pump (Abcb11) 

Q9QY30 
[41] 

S 
catechol O-methyltransferase 
(Comt) O88587 

* ** [42]b 

S 
cytochrome P450 2E1 
(Cyp2e1) Q05421 

** [43] 
* [44]c 

S 
cytochrome P450 2J6 (Cyp2j6) 

O54750 
[45] 

C 
endoribonuclease Dicer 
(Dicer1) Q8R418 

* ** [46] 

C 
receptor tyrosine-protein kinase 

erbB-4 (Erbb4) Q61527 
* ** [47] 
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S 
fatty-acid amide hydrolase 1 
(Faah) O08914 

* ** [48] 

S 
glucagon receptor (Gcgr) 
Q61606 

* ** [49] 

C 
growth hormone receptor (Ghr) 

P16882 
* [50] 

C 
ragulator complex protein 
LAMTOR2 (Lamtor2) Q9JHS3 

* ** [51] 

S 
hormone-sensitive lipase (Lipe) 
P54310 

** [52] 

S 
S-adenosylmethionine synthase 
isoform type-1 (Mat1a) Q91X83 

* ** [53]d 
* ** [54]e 

C nibrin (Nbn) Q9R207 * [55]f 

S 
nuclear factor erythroid 2-
related factor 2 (Nfe2l2) 

Q60795 

* ** [56]g 

S 
nucleoside diphosphate kinase 
A (Nme1) P15532 

* ** [57] 

S 

bile acid receptor, or farnesoid 

X-activated receptor (Nr1h4, or 
Fxr) Q60641 

* ** [58]h 
* ** [59]i 

S 
nitric oxide synthase, 
endothelial (Nos3) P70313 

** [60]j 

S 

cytosolic phospholipase A2, or 

phospholipase A2 group IVA 
(Pla2g4a) P47713 

* ** [61]k 

S 

peroxisome proliferator-

activated receptor alpha 
(Ppara) P23204 

[62]l 

S 
protein kinase C delta type 
(Prkcd), protein kinase C 
epsilon type (Prkce) P16054 

* ** [63]m 
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-S 
-Cn 

phosphatidylinositol 3,4,5-

trisphosphate 3-phosphatase 
and dual-specificity protein 

phosphatase PTEN (Pten) 
O08586 

-* [64] 
-   [65] 

S 
sphingomyelin 
phosphodiesterase (Smpd1) 

Q04519 

* [66]o 

S sortilin (Sort1) Q6PHU5 * [67] 

S 
signal transducer and 
transcription activator 6 (Stat6) 
P52633 

* ** [68] 

S 
metalloproteinase inhibitor 3 
(Timp3) P39876 

* ** [69] 

S 
Bax inhibitor 1 (Tmbim6) 

Q9D2C7 
[70] 

hepatocytes S 
peroxisome proliferator-
activated receptor alpha 

(Ppara) P23204 

* ** [71]p 

Table 2B 
legend for genotype: C = conditional KO; S = systemic KO 
a control and after hepatectomy 
b males and females 
c males and females, fed isoenergetic dextrose- and ethanol-containing diet 
d  time-course 

e hepatocellular carcinoma in KO animals 
f after 4 Gy ionizing irradiation 
g control and 3 mg/kg methyl-2-cyano-3,12-dioxooleana-1,9(11) dien-28-oate 
h control and 10 mg/kg obeticholic acid (6α-ethyl-chenodeoxycholic acid) 
i control and 100 mg/kg GW4064 (a FXR agonist) 
j in apoE-/- mice 
k control and high-fat high-cholesterol diet 
l control and diethylhexylphthalate treatment 
m control and 45% fat-containing diet 
n knockout specific to the pancreas 
o standard chow and high-fat diet 
p control and 50 µM nafenopin 
* affected pathways summarized in 8.2 (Overview) 
** quantitative data on stress proteins in Figure 2 

 
4.3 Endocrine system 
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Due to the extremely low number of reports, all dealing with tumor cell lines, 
we include in Table 3 both a single report on a specimen of mouse origin and 

a single report on a specimen of human origin. The latter is peculiar in that it 
exemplifies an unusual approach to gene inactivation, namely the expression 

at high levels of a protein with suppressor effects on the target component. 
 

sample genotype KO gene references 

insulinoma MIN6 

cells 
siRNA 

acyl-CoA desaturase 1 

(Scd1) P13516 
[72] 

secretome from 

human anaplastic 
thyroid carcinoma 

cell line 

repressiona nuclear factor NF-kappa-B [73] 

Table 3 
legend for genotype: siRNA = knocking down with small interfering RNA in a 

wild type genotype 
a stable transfection with a super-repressor form of IκBα 

 
4.4 Hematopoietic and immune system 
 

sample 
geno-
type 

KO gene references 

mesenchymal 
stromal cells 

siRNA 
hypoxia-inducible factor 1-alpha 
(Hif1a) Q61221 

[74]a 

hematopoietic stem/ 

progenitor cells 
S latexin (Lxn) P70202 [75] 

bone marrow cells, 
thymocytes 

S 
cellular tumor antigen p53 
(Tp53) P02340 

[76]b 

macrophages (bone 
marrow) 

C 

tumor necrosis factor alpha-

induced protein 3, or zinc finger 
protein A20 (Tnfaip3) Q60769 

[77]c 

dendritic cells (bone 
marrow) 

S 
NACHT, LRR and PYD 
domains-containing protein 10 
(Nlrp10) Q8CCN1 

[78]d 

dendritic cells (bone 
marrow) 

S 
nuclear factor erythroid 2-
related factor 2 (Nfe2l2) 

Q60795 

[79]e 
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T lymphocytes S 
transcription factor E2F2 (E2f2) 
P56931 

[80] 

spleen C 

ubiquitin carboxyl-terminal 

hydrolase BAP1 (Bap1) 
Q99PU7 

[39] 

spleen S 
ADP-ribosyl cyclase/cyclic 
ADP-ribose hydrolase 1 (Cd38) 
P56528 

[81]f  

Table 4 
legend for genotype: C = conditional KO; S = systemic KO; siRNA = knocking 
down with small interfering RNA in a wild type genotype 
a 21% O2 (normoxia) and 2% O2 (hypoxia) 
b together with a mutant p53 lacking the proline domain and a mimic for the 

human Δ133p53α p53 isoform (Δ122p53); control and amsacrine, 0.2 μg/mL 
for bone marrow cells and 1 μg/mL for thymocytes 
c control and and after LPS or TNF treatment 
d control and 100 ng/mL LPS 
e 50 or 100 μM cinnamaldehyde, and 5 or 10 μM 2,4-dinitrochlorobenzene 
f control and collagen type II-induced arthritis 
 
4.5 Muscular system 

 
All entries in Table 5 are listed according to the alphabetical order of the 

inactivated gene.  
 

sample 
geno-
type 

KO gene references 

quadriceps S aquaporin-4 (Aqp4) P55088 [82] 

gastrocnemius C 

CDGSH iron-sulfur domain-

containing protein 2 (Cisd2) 
Q9CQB5 

[83] 

diaphragm and 

gastrocnemius 
S 

collagen alpha-1(VI) chain 

(Col6a1) Q04857 
[84]a 

gastrocnemius, 
plantaris, soleus 

C cullin-3 (Cul3) Q9JLV5 [13] 

tibialis anterior S 
heat shock protein beta-1 
(Hspb1) P14602 

[85] 

soleus S 
hormone-sensitive lipase (Lipe) 

P54310 
[86] 
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-gastrocnemius 
-quadricipes 

S 
growth/differentiation factor 8, 
or myostatin (Mstn) O08689 

-[87]b 
-[88] 

quadricipes C 

rapamycin-insensitive 

companion of mTOR (Rictor) 
Q6QI06 

[89] 

quadricipes S titin (Ttn) A2ASS6 [20] 

myotubes S calpain-3 (Capn3) Q64691 [90] 

Table 5 

legend for genotype: C = conditional KO; S = systemic KO 
a animals of different ages 
b -/- and +/+ receiving 10 mg/kg anti-myostatin antibody twice weekly for 2 

weeks via subcutaneous injection 
 

4.6 Nervous system 
 
Table 6 lists reports dealing with whole brains, then reports studying individual 

brain structures and eventually papers investigating sensory organs (ear, eye).  
 

sample 
geno-

type 
KO gene references 

brain (whole) 

S 
adenylate cyclase type 5 
(Adcy5) P84309 

[91] 

S 
bleomycin hydrolase (Blmh) 

Q8R016 
[92]a 

S 
disks large homolog 2, or 
postsynaptic density protein 

PSD-93(Dlg2) Q91XM9 

[93]b 

S 
protein eva-1 homolog A, or 
FAM176A (Eva1a) Q91WM6 

[94] 

S 

isoform 3 of F-box/LRR-repeat 

protein 20 = scrapper (Fbxl20) 
Q9CZV8 

[95] 

S 
prosaposin receptor GPR37 

(Gpr37) Q9QY42 
[96] 

S 
neurolysin, mitochondrial 
(Nln) Q91YP2 

[97]c 
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S 
protein/nucleic acid deglycase 
DJ-1 (Park7) Q99LX0 

[98]d 

S 

L-isoaspartyl 

methyltransferase 
(Pcmt) P23506 

[99] 

S 
serine/threonine-protein kinase 
PINK1, mitochondrial (Pink1) 
Q99MQ3 

[100] 

S  
serum paraoxonase/ 
arylesterase 1 (Pon1) P52430 

[101]a 

S 

NAD-dependent protein 

deacetylase sirtuin-2 (Sirt2) 
Q8VDQ8 

[102]e 

S 

STIP1 homology and U box-

containing protein 1 (Stub1) 
Q9WUD1 

[103]f 

S 

14-3-3 protein gamma 

subtype, or 3-monooxygena-
se/tryptophan 5-monooxyge-

nase activation protein, 
gamma polypeptide (Ywhag) 

P61982 

[104] 

forebrain 

(embryonic) 
C 

transcription factor (specificity 

2) Sp2 (Sp2) Q9D2H6 
[105] 

brain (minus 

olfactory bulb and 
cerebellum) 

C 

signal transducer and activator 

of transcription 3 (Stat3) 
P42227 

[106]f 

[107]g 

cortex S 
substance-P receptor, or NK-1 

receptor (Tacr1) P30548 
[108] 

cortex (barrel) S 
zinc transporter 3 (Slc30a3) 
P97441 

[109]h 

cortex (prefrontal), 
olfactory bulb 

S granulin (Grn) P28798 [110] 

cortex (frontal) S 
interferon gamma (Ifng) 

P01580 
[111] 
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S 
nuclear factor NF-kappa-B 
p105 subunit (Nfkb1), cleaved 

into p50 subunit, P25799 

[112] 

cortex, striatum S 
E3 ubiquitin-protein ligase 
parkin (Prkn) Q9WVS6 

[113] 

striatum S 
transient receptor potential 
cation channel subfamily M 
member 1 (Trpm1) Q2TV84 

[114] 

cortex (temporal), 

hippocampus 
S 

fragile X mental retardation 
protein, or synaptic functional 

regulator FMR1 (Fmr1) 
P35922 

[115] 

hippocampus 

S 
cytoplasmic polyadenylation 
element-binding protein 1 

(Cpeb1) P70166 

[116] 

S 
nitric oxide synthase, brain 
(Nos1) Q9Z0J4 

[117] 

S 
NPC intracellular cholesterol 
transporter 1, or Niemann-Pick 
C1 protein (Npc1) O35604 

[118] 

S 
short transient receptor 
potential channel 1 (Trpc1) 

Q61056 

[119] 

hypothalamus 

S 
bifunctional epoxide hydrolase 
2 (Ephx2) P34914 

[120] 

S orexin (Hcrt) O55241 [121] 

hypothalamus, 
amygdala 

C androgen receptor (Ar) P19091 [122] 

nucleus accumbens S 

equilibrative nucleoside 

transporter 1 (Slc29a1) 
Q9JIM1 

[123]i 

cerebellum S ataxin-1 (Atxn1) P54254 [124] 
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S 
plasma membrane calcium-
transporting ATPase 2 

(Atp2b2) Q9R0K7 

[125] 

S 
protein bicaudal D homolog 2 
(Bicd2) Q921C5 

[126] 

S 
UDP-glucuronosyltransferase 

1-1 (Ugt1a1) Q63886 
[127] 

corpus callosum S 
serine/threonine-protein kinase 
DCLK2 (Dclk2) Q6PGN3 

[128] 

striatum S pleiotrophin (Ptn) P63089 [129]j 

suprachiasmatic 
nucleus (light 

stimulated) 

S 
pituitary adenylate cyclase-
activating polypeptide type I 

receptor (Adcyap1r1) P70205 

[130] 

thalamus, cortex S 
palmitoyl-protein thioesterase 
1 (Ppt1) O88531 

[131] 

various areas 

(frontal cortex; 
pons-medulla; 
mesencephalon; 

temporal lobe-
diencephalon) 

S 

pituitary adenylate cyclase-
activating polypeptide 
(Adcyap1) O70176 

 

[132]k 

astrocyte (primary 

cultures) 
S 

glutamate-cysteine ligase 
regulatory subunit (Gclm) 

O09172 

[133] 

HT22 (neuronal cell 
line) 

siRNA 
tumor necrosis factor (Tnf) 
P06804 

[134] 

cortical neurons 

(embryonic, primary 
culture) 

S 

probable ubiquitin carboxyl-

terminal hydrolase FAF-X 
(Usp9x) P70398 

[135] 

microglia S 
indoleamine 2,3-dioxygenase 1 

(Ido1) P28776 
[136]l 

meninges S 
extracellular sulfatases Sulf-1 
and -2 (Sulf1, Sulf2) Q8K007, 

Q8CFG0 

[137] 
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sciatic nerve 
in-frame 
deletion  

ubiquitin carboxyl-terminal 
hydrolase isozyme L1 (Uchl1) 

Q9R0P9 

[138]m 

myenteric plexus S 
fibroblast growth factor 2 
(Fgf2) P15655 

[139] 

ear (cochlea) S 
immunoglobulin-like domain 
containing receptor 1 (ILDR1) 
Q8CBR1 

[140] 

ear (cochlea, 
vestibulum) 

S cochlin (Coch) Q62507 [141] 

eye (cornea) S 
transforming growth factor-
beta-induced protein ig-h3 

(TGFBI) P82198 

[142] 

eye (lens) S 

-alpha-crystallin A chain 

(Cryaa) P24622 and B chain 
(Cryab) P23927 
-heat shock factor protein 4 

(Hsf4) Q9R0L1 

-[143] 

 
 

-[144] 

 

eye (vitreous body) S 
protein-glutamine gamma-
glutamyltransferase 2 (Tgm2) 
P21981 

[145] 

eye (retina)  S 
cone-rod homeobox protein 
(Crx) O54751 

[146]n 

eye (optic nerve) C 
E3 ubiquitin-protein ligase 

MYCBP2 (Mycbp2) Q7TPH6 
[147] 

Table 6 
legend for genotype: C = conditional KO; S = systemic KO; siRNA = knocking 
down with small interfering RNA in a wild type genotype 
a control and high-methionine diet 
b control and transient middle cerebral artery occlusion (tMCAO) 
c peptidomic analysis 
d cerebrum, cerebellum, brainstem 
e control and whole brain radiotherapy 

f males and females 
g males and females, control and cerebral ischemia/reperfusion 
h control and manipulation 
i control and acamprosate (200 mg/kg i.p. twice a day for 5 days) during 
chronic ethanol intake using two-bottle choice self-administration 
j control and cocaine HCl (15 mg/kg i.p. once a day for 7 days) 
k italics for the samples analyzed by 2-DE 
l after recovery from peripheral Bacille Calmette-Guerin challenge 
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m gad mouse 
n sampled at midday and midnight 

 
4.7 Reproductive system 

 
In Table 7, female structures are listed before male structures. 
 

sample 
geno-

type 
KO gene references 

ovary S factor in the germline alpha (Figla) O55208 [148] 

uterus S 
cytosolic phospholipase A2 (Pla2g4a) 

P47713 
[149] 

hydrometra 
fluid 

C estrogen receptor alpha (Esr1) P19785 [150] 

mammary 

gland 
S 

matrix metalloproteinase-14 (Mmp14) 

P53690 
[151]a 

milk fat 
globule 

C 
xanthine dehydrogenase/oxidase (Xdh) 
Q00519 

[152] 

testis 

S 

fragile X mental retardation protein, or 

synaptic functional regulator FMR1 
(Fmr1) P35922 

[115] 

C huntingtin (Htt) P42859 [153] 

S 
plasma serine protease inhibitor (Serpina5) 

P70458 
[154] 

C 
ubiquitin-conjugating enzyme E2 W 
(Ube2w) Q8VDW4 

[155] 

Sertoli 

cells 
siRNA attractin (Atrn) Q9WU60 [156]b 

prostatic 
cancer cell 

line 

siRNA integrin beta-6 (Itgb6) Q9Z0T9 [157] 

Table 7 

legend for genotype: C = conditional KO; S = systemic KO; siRNA = knocking 
down with small interfering RNA in a wild type genotype 
a time-course 
b also, loss-of-function mutation Atrnmg-3J 
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4.8 Respiratory system 
 

sample 
geno-

type 
KO gene references 

lung 

C 
cysteinyl leukotriene receptor 1 
(Cysltr1) Q99JA4 

[158] 

S 
growth hormone receptor (Ghr) 

P16882 
[159] 

C 
retinoblastoma-like protein 1 
(Rbl1) Q64701 

[36] 

S 

uteroglobin or Clara cell 

secretory protein (Scgb1a1) 
Q06318 

[160]a 

S VIP peptides (Vip) P32648 [161] 

lung cells (digestion 
with collagenase) 

S 
cellular tumor antigen p53 
(Tp53) P02340 

[76]b 

alveolar 
macrophages,  

S 

pulmonary surfactant-

associated protein A (Sftpa1) 
P35242 

[162]c 
[163]d 

Table 8 

legend for genotype: C = conditional KO; S = systemic KO 
a female mice 
b together with a mutant p53 lacking the proline domain and a mimic for the 
human Δ133p53α p53 isoform (Δ122p53); control and 1 μg/mL amsacrine 
c control, KO and KO treated with surfactant, male mice 
d control, KO and KO treated with surfactant, female mice 
 

4.9 Skeletal system 
 

sample 
geno-

type 
KO gene references 

bone S chondroadherin (Chad) O55226 [164] 

cartilage S 
collagen alpha-1(IX) chain (Col9a1) 
Q05722 

[165] 

chondrocytes 
(primary 
culture) 

siRNA nidogen-2 (Nid2) O88322 [166] 
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osteoblast C 
neuropeptide Y receptor type 1 (Npy1r) 
Q04573 

[167] 

fibroblasts 

S 
anaphase-promoting complex, or 
cyclosome cofactor Cdh 

[168] 

S 
FAS-associated death domain protein 

(Fadd) Q61160 
[169] 

S 
GTPase HRas and NRas (Hras, Nras) 

Q61411, P08556 
[170] 

S 
peroxisome proliferator-activated 

receptor delta, or beta (Ppard) P35396 
[171] 

S selenoprotein F (Selenof) Q9ERR7 [172] 

Table 9 

legend for genotype: C = conditional KO; S = systemic KO; siRNA = knocking 
down with small interfering RNA in a wild type genotype 
 

4.10 Tegumentary system 
 

Making reference to its topographical distribution more than to its 
embryological derivation, adipose tissue was referred to under this section, 
with reports dealing with it listed in Table 10B.  

 

sample 
geno-
type 

KO gene references 

epidermis C 
mothers against decapentaplegic homolog 4 

(Smad4) Q13485 
[173] 

epidermis 
evelope 

S loricrin (Lor) P18165 [174] 

Table 10 A 
legend for genotype: C = conditional KO; S = systemic KO 

 

sample 
geno-
type 

KO gene references 

BAT S 
peroxisome proliferator-activated receptor 

alpha (Ppara) P23204 
[175, 176] 

WAT 

S cytochrome P450 2J6 (Cyp2j6) O54750 [45] 

S growth hormone receptor (Ghr) P16882 [177] 
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S 
peroxiredoxin 3, or thioredoxin-dependent 
peroxide reductase, mitochondrial (Prdx3) 

P20108 

[178] 

C, S diamine acetyltransferase 1 (Sat1) P48026 [179] 

S 
CAAX prenyl protease 1 homolog (Zmpste24) 

Q80W54 
[180] 

Table 10B 
legend for tissue type: BAT = brown adipose tissue, WAT = white adipose 

tissue 
legend for genotype: C = conditional KO, S = systemic KO 
 

4.11 Urinary system 
 

sample 
geno-

type 
KO gene references 

kidney 

S 
apolipoprotein E (Apoe) 
P08226 

[181] 

S 
bleomycin hydrolase (Blmh) 
Q8R016 

[182]a 

S 
B2 bradykinin receptor (Bdkrb2) 

P32299 
[183]b 

S 
ubiquitin carboxyl-terminal 
hydrolase CYLD (Cyld) 

Q80TQ2 

[184] 

S klotho (Kl) O35082 [185] 

S 
leucine-rich repeat 
serine/threonine-protein kinase 

2 (Lrrk2) Q5S006 

[186] 
[187] 

S 
serum paraoxonase / 
arylesterase 1 (Pon1) P52430 

[188]a 

S 
Regulator of cell cycle RGCC 

(Rgcc) Q9DBX1 
[189] 

S 
metalloproteinase inhibitor 3 
(Timp3) P39876 

[190]c 
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S 
nuclear factor erythroid 2-
related factor 2 (Nfe2l2) 

Q60795 

[191]d 

C miR-17-92 [192]e 

kidney cortex C 
endoribonuclease Dicer 

(Dicer1) Q8R418 
[193] 

glomerulus S 
collagen alpha-3(IV) chain 
(Col4a3) or Alport mouse, 

Q9QZS0 

[194] 

mpkCCDC11 cellsf C 

cAMP-dependent protein 
kinase catalytic subunit alpha 
(Prkaca) and beta (Prkcb) 

P05132 and P68404 

[195]g 

bladder S 

large-conductance, voltage-

dependent and Ca2+-dependent 
K+ channel, or calcium-
activated potassium channel 

subunit alpha-1 (Kcnma1) 
Q08460 

[196] 

urethra S 
estrogen receptor beta (Esr2) 

O08537 
[197]h 

Table 11 
legend for genotype: C = conditional KO; S = systemic KO 
a control and 1% methionine in drinking water for 8 weeks 
b pups from mothers on 5% NaCl diet during pregnancy 
c control and after streptozotocin treatment 
d control and 3 mg/kg methyl-2-cyano- 3,12-dioxooleano-1,9-dien-28-oate 
e lesions in proximal tubules 
f kidney epithelial cells in culture, with maximal expression of aquaporin 
g single and double knockout 
h female mice 

 
 
5 Tissues/organs in comparison 

 
The evidence collected over the years in the systematic 

transcriptomic/proteomic survey of the Human Protein Atlas Project [198-200] 
has shown that as many as 46% of the proteins are expressed in all tissues 
(14% at high, 32% at low level); in contrast, only 17% of the proteins are 

enriched in a tissue or tissue group (3% highly tissue-enriched, 9% 
moderately tissue-enriched, 5% group-enriched), and 28% of them have an 

intermediate behavior (17% mixed expression at high level, 11% mixed 
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expression at low level) [201]. On this basis, systematically knocking out a 
gene may be anticipated to result in significant, and even pervasive, changes 

in many/all districts throughout the body. It would thus seem of the utmost 
relevance to investigate the influence of the transcriptional milieu by 

comparing the outcome of the same deletion in a number of tissues/organs. 
Contrary to this perspective and its implications, however, comparisons 
between/among different samples in the same genetic background were 

carried out, so far, in only a handful of cases. We can list two papers studying 
three organs each [39, 76], six studying two organs [13, 20, 36, 45, 115, 202] 

plus two pairs, from a single research group, dealing with one tissue each, 
[101, 188] and [92, 182]. In addition, one report compares the effect of a gene 
KO across a single complex organ [132]; a pair of reports do it across different 

experimental conditions [106, 107]. One KO model has been assessed in 
various setups, including in different subproteomes, in four independent 

papers [115, 203-205]. Finally, and less to the point, the effects of knocking 
out two genes of the same family have been assessed in different organs [33, 
82]. As may be expected, the way of presenting and analyzing the results 

extensively differs from one publication to the other. In the following we’ll 
comment only on those papers in which data reduction allows a direct 

comparison of the effects on the proteome between/among samples. 
 
Starting from the reports that deal with the highest number of tissues/organs, 

the paper by Baughman et al. [39] is very complex in its layout: it includes an 
extensive technical assessment of an unusual (neutron-encoded) in vivo 

labeling technique and records both proteomic and metabolomic data, 
spanning to a different depth as many as nine sample types (intestine, plasma, 
liver, lung, heart, brain, kidney, pancreatic islets, skeletal muscle). A further 

complication in this investigation is the fetal lethality of a systemic inactivation 
of the test gene, ubiquitin carboxyl-terminal hydrolase BAP1 (gene Bap1, 

UniProt entry Q99PU7), and the perinatal lethality of its liver-specific 
inactivation. BAP1 is ubiquitously expressed; however, after conditional 
knock-down, the highest drop in mRNA transcript level is measured in liver, 

spleen and pancreas. By comparing the effects on the proteomes of these 
organs, with a total of 1695 proteins varying >1.5-fold vs wild-type, only 3 

proteins (0.06%) are common to the three samples, whereas 50 (2.95%) are 
shared by spleen and liver, 18 (1.06%) between spleen and pancreas, and 11 
(0.65%) between liver and pancreas. The minimal overlap among organs 

correlates with the difference in the main processes being involved: in liver, 
several metabolic pathways are affected (involving glucose/hexose, lipid, 

cholesterol) whereas the main changes in pancreas deal with mitochondrial 
proteins and pancreatitis markers, and those in spleen with several factors 
that regulate the cell cycle. 

As for the reports that compare two tissues/organs, a pair addresses the 
behavior of the two types of striated muscle - skeletal and cardiac. Raddatz et 

al. [20] aim at defining reference maps for the proteomes of these tissues in 
wild-type mice. In addition, the authors monitor the effects of the systemic KO 
of titin (gene Ttn, UniProt entry A2ASS6), which results in changes in the 

levels of 5 proteins in the heart and of 19 in the quadricipes; 3 of them (14% 
of the total) are common to both samples and document a cellular stress 

response. Conversely, Papizan et al. [13] study in the two tissues the effects 
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of the conditional inactivation of cullin-3 (gene Cul3, UniProt entry Q9JLV5). 
The publication records (in its Figure 4 and Figure 7) the top 10 up- and 

down-regulated proteins in either case. The lists overlap in 7 cases; however, 
only in 3 of them the changes monitored in heart and skeletal muscle are 

concordant (2 proteins consistently decrease, 1 consistently increases, in a 
KO vs wild-type comparison) while in the remaining 4 cases the changes are 
discordant. 

A few other reports survey organs that are not closely related to one another. 
Hernández-Fernaud and Salido [202] compare the effects on liver and kidney 

of the inactivation of mitochondrial serine-pyruvate aminotransferase (gene 
Agxt, UniProt entry O35423). Out of a total of 31 affected proteins, 11 are 
unique to liver, 17 are unique to kidney and 3 are common to the two organs. 

Interestingly two of the shared items – peroxiredoxin and enolase, the third 
one being malic enzyme – rank first and second in the list of the ‘repeatedly 

identified differentially expressed proteins’ as worked out ten years ago by 
Petrak et al. [206] (the occurrence of the ‘repeatedly identified differentially 
expressed proteins’ among the items affected by gene inactivation is 

discussed at length in 8.2 Overview). 
Xu et al. actually study three samples but taken from just two organs (hence 

the ordering at this point of our list), as they compare the outcome of the 
inactivation of fragile X mental retardation protein (synaptic functional 
regulator FMR1, gene Fmr1, UniProt entry P35922) in testis to that in two 

areas of the brain, hippocampus and temporal lobe. The differentially 
regulated proteins are clustered in the polyribosome and RNA-binding protein 

categories for brain but not for testis. The Venn diagram (in Figure 3D of the 
paper) shows the following: 248 proteins of the ribosome pathway in total, 88 
specific to the temporal lobe and 83 to the hippocampus, 41 specific to the 

testis; 32 in common between the two areas of the brain, 2 between temporal 
lobe and testis, 1 between hippocampus and testis, and just 1 protein shared 

by the three sample types. These findings suggest that the different portions 
in such a complex organ as brain present with peculiar features. This very 
aspect is addressed, in principle, by Maasz et al. [132] for the inactivation of 

pituitary adenylate cyclase-activating polypeptide (gene Adcyap1, UniProt 
entry O70176). However, in practice, the procedures the authors select and 

the way they report their results definitely curtail the depth of the information 
their account provides. In a preliminary step, 4 brain districts are analyzed by 
1-DE, KO vs wild-type, namely frontal cortex, pons plus medulla, 

mesencephalon, and temporal lobe plus diencephalon; in a second step, the 
two samples showing the most obvious variations - mesencephalon, and 

temporal lobe plus diencephalon - are further analyzed by 2-DE. Unfortunately,  
only a single list of 22 affected proteins is eventually provided, whose title just 
makes reference to ‘brain samples’. 

The four papers by the group of Suszyńska-Zajczyk deal with the effect of 
inactivation of two genes coding for enzymes involved in the metabolism of 

homocysteine – bleomycin hydrolase (gene Blmh, UniProt entry Q8R016) [92, 
182] and serum paraoxonase/arylesterase 1 (gene Pon1, UniProt entry 
P52430) [101, 188] – on two organs – brain [92, 101] and kidney [182, 188]. 

The proteins affected in each organ of the KO animals are very similar 
irrespective of the genetic background: 11 in common between brains, plus 7 

specific to Blmh and 1 specific to Pon1, vs 9 in common between kidneys, 
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plus 1 specific to Blmh and 2 specific to Pon1. Both with Blmh and with Pon1 
inactivation, only 1 protein appears to be affected in brain and kidney, namely 

peroxiredoxin 2: in three of the samples from animals receiving standard chow 
this protein increases whereas it decreases in the brain of Pon1 -/- mice. In 

animals receiving a methionine-enriched diet (1%) the effect on the brain 
becomes an increase with both genes, with a much larger effect, however, 
with the KO of Blmh than with that of Pon1; the changes in kidneys are 

instead much lower than with control diet. 
 

One more paper actually deals with the effects of gene KO (superoxide 
dismutase [Cu-Zn], gene Sod1, UniProt entry P08228) in two types of districts,  
skeletal muscle and peripheral nerve [207]; however, the main point in 

Sakellariou et al. investigation is the comparison between systemic and 
tissue-specific gene inactivation hence we are going to discuss of the 

evidence from their investigation at a later point of this review (8.3, Overview). 
 
 

6 Special cases 
 

In one of the introductory paragraphs (Section 3), we defined which types of 
reports we would review and which we wouldn’t. 
 

6.1 Subproteomes 
 

One of the inclusion criteria was analysis of whole tissues. Table 12 collects 
the cases in which, on the contrary, specific cell components have been 
purified and investigated. 

 

subproteome sample KO gene references 

cytosol 

brain 
protein/nucleic acid deglycase 

DJ-1 (Park7) Q99LX0 
[98] 

kidney, liver 
serine-pyruvate 
aminotransferase, 

mitochondrial (Agxt) O35423 

[202] 

fibroblasts 
(embryonic) 

integrin beta-3 (Itgb3) O54890 [208] 

exosomes 

fibroblasts 

(embryonic) 

arrestin domain-containing 

protein 1 (Arrdc1) Q99KN1 
[209]a 

endothelial 
progenitor cells 

interleukin-10 (Il10) P18893 [210] 

serum 
nuclear factor NF-kappa-B 

p105 subunit (Nfkb1) P25799 
[211]b 
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lipid rafts brain areas 

fragile X mental retardation 

protein, or synaptic functional 
regulator FMR1(Fmr1) 
P35922 

[203] 

lysosomes, 

mannose 6-
phosphate 

secretome 

fibroblasts 
N-acetylglucosamine-1-
phosphotransferase subunit 
gamma (Gnptg) Q6S5C2 

[212] 

lysosomes 
fibroblasts 

(embryonic) 

major facilitator superfamily 

domain-containing protein 8 
(Mfsd8) Q8BH31 

[213] 

lysosomes liver 
lysosome-associated 
membrane glycoprotein 2 
(Lamp2) P17047 

[214] 

membranes 

erythrocytes beta-adducin (Add2) Q9QYB8 [215]c 

cerebellum 

(granule 
neurons) 

major prion protein (Prnp) 

P04925 
[216]d 

membrane 
vesicles  

jejunal villus 
epithelial cell 

brush border 

-Na+/H+ exchange regulatory 

cofactor NHE-RF1 (Slc9a3r1) 
P70441 
-Na+/H+ exchange regulatory 

cofactor NHE-RF2 (Slc9a3r2) 
Q9JHL1 

-[217] 

 
 

-[218] 

 
 

microsomes endothelium 
membrane type-1 matrix 
metalloproteinase (Mt1mmp) 
P53690 

[219] 

microsomes heart 
cardiac phospholamban (Pln) 
P61014 

[220] 

microtubules brain 
huntingtin-associated protein-
1 (Hap1) O35668 

[221] 

mitochondria 

liver, kidney 
serine-pyruvate 
aminotransferase, 
mitochondrial (Agxt) O35423 

[202] 

liver 
beta,beta-carotene 9',10'-
oxygenase (Bco2) Q99NF1 

[222] 
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heart desmin (Des) P31001 [223] 

skeletal muscle 
interleukin-15 receptor 

subunit alpha (Il15ra) Q60819 
[224] 

embryonic 
fibroblasts 

mitogen-activated protein 
kinase 3 (Mapk3) Q63844 

[225] 

skeletal muscle 
growth/differentiation factor 8, 
or myostatin (Mstn) O08689 

[226] 

kidney 
protein kinase C epsilon type 

(Prkce) P16054 
[227] 

heart 
urea transporter 1, or B 
(Slc14a1) Q8VHL0 

[228] 

brain 
superoxide dismutase 2 

(Sod2) P09671 
[229] 

liver 

very long-chain specific acyl-
CoA dehydrogenase, 

mitochondrial (Acadvl) 
P50544 

[230]e 

brown fat 
mitochondrial brown fat 
uncoupling protein 1 (Ucp1) 

P12242 

[231] 

brown fat 

serine/threonine-protein 

kinase STK11 (Stk11) 
Q9WTK7 

[232]f 

heart 

leucine-rich PPR motif-
containing protein, 

mitochondrial (Lrpprc) 
Q6PB66 

[233] 

heart 
transcription termination 
factor 4, mitochondrial 
(Mterf4) Q8BVN4 

[233] 

heart 
DNA-directed RNA 
polymerase, mitochondrial 

(Polrmt) Q8BKF1 

[233] 
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heart 
transcription factor A, 
mitochondrial (Tfam) P40630 

[233] 

heart 
twinkle protein, mitochondrial 
(Twnk) Q8CIW5 

[233] 

myelin 
from whole 

brain 

-UDP-galactose:ceramide 

galactosyltransferase (CGT), 
galactose-3-O-

sulfotransferase (CST) 
-proteolipid protein 
(PLP)/DM20 

-[234] 

 
 

 
-[235] 

 

nucleoli 
embryonic stem 

cells 

linker histone H1 (H1c, H1d, 

H1e) 
[236] 

peroxisomes liver, kidney 
serine-pyruvate 
aminotransferase, 

mitochondrial (Agxt) O35423 

[202] 

secretome 

white 
adipocytes 

aldehyde dehydrogenase 1 

a1/ retinal dehydrogenase 1 
(Aldh1a1) P24549 

[237] 

cardiomyocytesd 
beta-3 adrenergic receptor 

(Adrb3) P25962 
[238]g 

embryonic 
fibroblasts 

-bone morphogenetic protein 
1 (Bmp1) P98063 and tolloid-

like protein 1 (Tll1) Q62381 
-disintegrin and 

metalloproteinase domain-
containing protein 17 
(Adam17) Q9Z0F8 

-[239] 
 

 
-[240] 

 
 
 

synapses 

hippocampus 
amyloid-beta A4 protein (App) 
P12023 

[241] 

forebrain 

FERM, ARHGEF and 

pleckstrin domain-containing 
protein 1 (Farp1) F8VPU2 

[242] 

-cortex 
-embryonic 

cortex (cultured 
cells) 

fragile X mental retardation 
protein, or synaptic functional 

regulator FMR1 (Fmr1) 
P35922 

-[204] 
-[205] 
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prefrontal cortex 
microtubule-associated 
protein tau (Mapt) P10637 

[243] 

visual cortex 

protein arginine N-

methyltransferase 8 (Prmt8) 
Q6PAK3 

[244] 

cortex 
superoxide dismutase 2 

(Sod2) P09671 
[245] 

hippocampus 
transmembrane protein 35A 
(Tmem35a) Q9D328 

[246] 

serine 
hydrolases 

brain 

NPC intracellular cholesterol 
transporter 1, or Niemann-
Pick C1 protein (Npc1) 

O35604 

[247] 

amyloid 
deposits 

intestinal villi 
pituitary adenylate cyclase-
activating polypeptide 
(Adcyap1) O70176 

[248] 

Table 12 
a ectosomes and exosomes: ectosomes are generated by shedding of the cell 
surface membrane, exosomes by exocytosis of multivesicular bodies 
b after skeletal muscle ischemia-reperfusion 
c reticulocyte and RBC ghosts 
d cerebellar granule neurons 
e liver with and without 16 h fasting 
f two temperatures 
g control and 20 µM phenylephrine 
 

6.2 Post-translational modifications (PTM) 
 
Table 13 lists the cases in which the effects of gene inactivation involve the 

level of post-translational modifications (PTM) in addition to/instead of the 
very concentration of the proteins. 

 

PTM sample KO gene references 

acetylation 

fibroblasts 

(embryonic) 
sirtuin 3 (Sirt3) Q8R104 [249] 

liver 
(cytoplasm) 

histone deacetylase 6 
(Hdac6) Q9Z2V5 

[250] 

liver 
(mitochondria

) 

sirtuin 3 (Sirt3) Q8R104 [251] 
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citrullination spleen 

ADP-ribosyl 

cyclase/cyclic ADP-
ribose hydrolase 1 
(Cd38) P56528 

[81] 

hydroxylation of 
lysine 

liver 

phosphatidylinositol 
3,4,5-trisphosphate 3-

phosphatase and dual-
specificity protein 
phosphatase PTEN 

(Pten) O08586 

[64] 

isoaspartylation CNS 
L-isoaspartyl 
methyltransferase 

(Pcmt) P23506 

[99] 

oxidation 
(carbonylation) 

CNS (cortex) 

ubiquitin carboxyl-

terminal hydrolase L-1 
(Uchl1) Q9R0P9 

[252] 

oxidation 
(cysteine 
oxidation) 

erythrocytes 
peroxiredoxin 2 (Prdx2) 
Q61171 

[253] 

phosphorylation 

adipose 
tissue 

cyclin-dependent kinase 
5 (Cdk5) P49615 

[254] 

connective 

tissue (spinal 
ligament) 

chemokine (C-X-C motif) 

ligand 7, isoform CRA_b 
(Ppbp, or Cxcl7) Q9EQI5 

[255] 

CNS 
Ser/Thr kinase PTEN-
induced kinase 1 (Pink1) 
Q99MQ3 

[100] 

CNS 
(cerebellum) 

cGMP-dependent protein 
kinase type I (Prkg1) 

P0C605 

[256]  

CNS 

(striatum) 

pleiotrophin and midkine 
(Ptn, Mdk) P63089, 

P12025 

[257] 

liver 

rapamycin-insensitive 

companion of mTOR 
(Rictor) Q6QI06 

[258] 
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macrophages 
(peritoneal)a 

receptor interacting 
protein (Rip3) Q9QZL0 

[259] 

testis 

serine/threonine-protein 
phosphatase PP1-
gamma catalytic subunit 

(Ppp1cc) P63087 

[260] 

succinylation of 

lysine 
heart 

NAD-dependent protein 
deacylase sirtuin-5, 

mitochondrial (Sirt5) 
Q8K2C6 

[261] 

[262] 

Table 13 
a control and lipopolysaccharide- or tumor necrosis factor-treated 
 

6.3 Gene families 
 
Another of the inclusion criteria put forward in Section 3 was analysis of single 

KO. Table 14 lists on the contrary some cases in which more genes belonging 
to a single family, or being functionally related, were knocked down. Their 

number was usually 2 except with histone 1 (3 isoforms) and with MUP (21 
isoforms).  
 

sample KO genes references 

embryonic stem 
cells (nucleoli) 

linker histone H1 (H1c, H1d, H1e) 
P15864, P43277, P43274 

[236] 

CNS (meninges) 
extracellular sulfatases Sulf-1 and -2 

(Sulf1, Sulf2) Q8K007, Q8CFG0 
[137] 

CNS (striatum) 
(phosphoproteome) 

pleiotrophin and midkine (Ptn, Mdk) 
P63089, P12025 

[257] 

eye (lens) 
αA- and αB-crystallin (Cryaa, Cryab) 

P24622, P23927 
[143] 

fibroblasts 
(embryonic) 

apoptosis signal-regulating kinase 1 to 3 
(Ask1-3) O35099, Q9WTR2 

[263]a 

fibroblasts 
(embryonic) 

GTPase H-ras and N-ras (Hras, Nras) 
Q61411, P08556 

[170] 

fibroblasts 
(embryonic) 
(secretome) 

cathepsin B and L (Ctsb, Ctsl) P10605, 
P06797 

[264] 
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heart 
executioner caspase-3 and -7 (Casp3, 
Casp7) P70677, P97864 

[265] 

heart 

(mitochondria) 

creatine kinase, muscle (Ckm) and 

sarcomeric mitochondrial (Ckmt2) 
isoforms; P07310, Q6P8J7 

[266] 

mammary gland 

(stem cells) 

metalloproteinase inhibitor 1 and 3 

(Timp1, Timp3) P12032, P39876 
[267] 

penis 
nitric oxide synthase, brain and 
endothelium (Nos1, Nos3) Q9Z0J4, 

P70313 

[268] 

platelets 
transcription factor Sp1 and Sp3 (Sp1, 
Sp3) O89090, O70494 

[269] 

sperm (elongated 
spermatids) 

polyadenylate-binding protein-interacting 
protein 2 (Paip2a, Paip2b) Q9D6V8, 
Q91W45 

[270] 

striated muscle 

mitogen-activated protein kinase-

activated protein kinases 2 and 3 
(Mapkapk2, Mapkapk3) P49138, 
Q3UMW7 

[271] 

teeth (enamel) 
amelogenin and ameloblastin (Amel, 
Ambn) P63277, O55189 

[272] 

urine 
major urinary proteins (Mup), 21 genes 
and 21 pseudogenes, P11588 etcetera 

[273] 

conditioned media 
(embryonic 

fibroblasts) 

bone morphogenetic protein 1 (Bmp1) 
and tolloid-like protein 1 (Tll1) P98063, 

O43897 

[239] 

Table 14 
a control and hyperosmotic stress 

 
6.4 Dose effects 
 

We mention in Table 15 the few cases in which overexpression of the protein 
of interest, in a transgenic organism, was compared to its complete absence, 

in a null organism, and to its physiological levels, in a wild-type mouse. We 
also list the cases in which hemizygous mice were compared either to wild-
type or to null animals. 
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sample KO genes TG +/+ +/- -/- references 

mammary 

gland 
epithelial cells 

annexin A1 (Anxa1) 
P10107 

  X X [274] 

ear (organ of 
Corti) 

immunoglobulin-like 

domain containing 
receptor 1 (Ildr1) 

Q8CBR1 

  X X [140] 

liver 
insulin receptor (Insr) 
P15208 

  X X [275] 

liver 

(mitochondria) 

superoxide dismutase 

2 (Sod2) P09671 
 X X  [276] 

CNS (visual 
cortex) 

protein arginine N-

methyltransferase 8 
(Prmt8) Q6PAK3 

 X X X [244] 

CNS 
(prefrontal 
cortex) 

granulin (Grn) P28798 Xa X  X [110] 

CNS 
(striatum) 

pleiotrophin (Ptn) 
P63089 

X X  X [129] 

white adipose 
tissue 

diamine 
acetyltransferase 1 

(Sat1) P48026 

X X  X [179] 

Table 15 
legend: +/+ = homozygous wild-type; +/- = hemizygous KO; -/- = homozygous 
KO; TG = transgenic; X = investigated genotype 
a Cre recombination 
 

 
7 What about research areas of our current interest 
 

Through the years, our own proteomic investigation has most often dealt with 
biological fluids in animal models of disease (e.g. [277-280]). When initially 

defining reference patterns for the relevant proteomes [281, 282], we 
definitely analyzed specimens from both, male and female animals [283, 284]. 
Through the years, we have published as well review articles summarizing 

data on the same two topics: [285-287] on biological fluid proteomics, [288, 
289] on gender proteomics. The following headings list the effects of gene 

inactivation as monitored in these areas. 
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7.1 Biological fluids 
 

The number of reports dealing with changes in the concentration of the major 
proteins of plasma/serum and of the other biological fluids is very low overall, 

so it comes to little surprise that only very few KO murine models address this 
point. In two such cases the analytical matrix is serum [290, 291], in one it is 
apoB-depleted plasma [292], in another bronchoalveolar lavage fluid (BALF) 

[293] or, with the inactivation of a number of related genes, urine [273].  
Two reports investigate the influence of the genetic background on the 

outcome of a high-fat diet. When the expression of adipocyte fatty acid-
binding protein (gene Fabp4, UniProt entry P04117) is turned down, a bone 
morphogenetic protein from the adipose tissue, GDF-3/Vgr-2 protein, is found 

to circulate at higher levels than in control animals [290]. Conversely, when 
low-density lipoprotein receptor (gene Ldlr, UniProt entry P35951) is turned 

down, a number of proteins are produced at altered levels by the liver, 
featuring a proinflammatory remodeling of the plasma proteome. The 
fractional turnover rates of short-lived proteins implicated in stress-response, 

lipid metabolism, and transport functions are significantly increased [292]. In 
contrast with such an extensive rearrangement of the secretory program in 

Ldlr KO mice, the response to burn injury is found very similar in wild-type and 
in interferon-gamma (gene Ifng, UniProt entry P01580) KO animals [291]. In 
mice lacking the expression of pulmonary surfactant-associated protein A 

(gene Sftpa1, UniProt entry P35242) and exposed to 2 parts/million (ppm) 
ozone for 3 hours, BALF proteome is affected in a way qualitatively similar but 

quantitatively more extensive than wild-type mice vs animals exposed to 
filtered air [293]. 
 

7.2 Males vs females 
 

As a rule, differences in the proteomes are observed between males and 
females already under baseline conditions (wild-type animals, no treatment) – 
a point documented by many reports, which we have reviewed [288, 289]; 

further differences are observed as a result of gene inactivation. Besides 
genetic background and sex, some of the experimental plans in the surveyed 

reports include additional variables, e.g. surgical procedures or exposure of 
the animals to toxic substances; also the outcome of such treatments differs 
between males and females. Data are reported in different ways from one 

research paper to another, sometimes featuring direct comparisons only 
between/among few samples from complex experimental set-ups. 

 
Grouping the data by anatomical district, as in the main body of the review, 
two papers of this set deal with the cardiovascular system, and specifically 

with the heart: in addition to gene inactivation, either a surgical procedure is 
carried out to induce, or a transgene is inserted in the genome of the animals 

to prevent disease. One experimental plan compares wild-type to estrogen 
receptor beta (gene Esr2, UniProt entry O08537) KO mice of both sexes, 
without and with transverse aortic constriction leading to pressure overload 

[14]. Quantitative and qualitative differences between the proteomes of males 
and females are observed, with little overlap in the differential spots either in 

+/+ or in -/- genotypes; such a divergence is obvious not only when listing 
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individual proteins but also when considering protein categorization into 
pathways. In response to pressure overload, some of the proteins that confer 

cardioprotection decrease in males (e.g. aldehyde dehydrogenase, 
mitochondrial in +/+, and myosin in -/-) but increase in females (e.g. 

cytoskeletal and structural proteins, including vinculin in +/+ and cofilin in -/-).  
Another experimental plan includes male and female mice in four genetic 
backgrounds: wild-type or KO in endothelial nitric oxide synthase (gene Nos3, 

UniProt entry P70313), as well as wild-type or transgenic in endothelin-1 
(gene Edn1, UniProt entry P22387); inactivation of Nos3 is to induce diastolic 

dysfunction, activation of Edn1 is to rescue it [29]. While Vignon-Zellweger et 
al. choose to not itemize the individual findings in the main body of the report, 
the data in their Supplementary Table 1 show that, out of a total of 77 

differentially abundant protein spots, only two change in a concordant way vs 
wild-type in males and in females, namely glutathione-S-transferase Mu 2 and 

peroxiredoxin-6 (one species), and both of them only in the endothelin TG 
genotype. 
 

Two investigations deal instead with the digestive system and specifically with 
the liver. One compares wild-type and catechol O-methyltransferase (gene 

Comt, UniProt entry O88587) KO mice [42]. Several of the observed changes 
are sexually dimorphic; many of the differential proteins are affected to a 
lesser extent in females, a few to a larger extent in males. Some changes 

even occur in opposite direction between the sexes: glutathione-S-transferase 
as well as intermediate filaments components CK-8 and CK-18 are up-

regulated in females and down-regulated in males. The other paper compares 
wild-type and cytochrome P450 2E1 (gene Cyp2e1, UniProt entry Q05421) 
KO mice raised with isoenergetic liquid diets containing either dextrose or 

ethanol [44]. Data from the experiment are presented in different ways for the 
various samples (including Supplementary Tables), so that a straightforward 

comparison among animals and treatments is not easy. The clustering result, 
however, infers that, among the three factors being tested - ethanol, CYP2E1 
knockout and gender - the effect of gene KO on global protein expression is 

the greatest. Out of 67 proteins influenced by diet in WT females and 35 in 
WT males, 12 are common between the sexes (one, formimidoyltransferase-

cyclodeamidase, with changes in opposite directions); conversely, in KO 
animals, 6 of the proteins up-regulated by diet are common between males 
and females. 

 
As for the nervous system/the brain, the report by Di Domenico et al. deals 

with neuron-specific KO for signal transducer and activator of transcription 3 
(gene Stat3, UniProt entry P42227) [106]. Wild-type males differ from wild-
type females for the concentration of 9 proteins, KO males differ from KO 

females for that of 9 proteins: 5 are common to both conditions. Conversely, 
KO males differ from wild-type males for the concentration of 8 proteins, 

whereas KO females differ from wild-type females for that of 7 proteins, none 
being in common. In both sexes the main effects of gene inactivation is on 
mitochondrial and oxidative metabolism, but in males both metabolic and 

signaling pathways are affected. In a follow up to this investigation [107], the 
same authors assess the effects of ischemia (through middle cerebral artery 

occlusion) / reperfusion by comparing the proteomic pattern of ipsilateral and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

contralateral hemispheres. Once more, both number and identity of the 
affected proteins does vary between males and females, which emphasizes 

sex-specificity of repair mechanisms and ultimately of neuronal survival. 
 

Finally, for the respiratory system, Phelps et al. analyze alveolar 
macrophages from wild-type mice in comparison with those from animals KO 
in pulmonary surfactant-associated protein A (gene Sftpa1, UniProt entry 

P35242), the latter either without any treatment or receiving a replacement 
therapy with surfactant. One paper from this group assesses samples from 

male [162], another, samples from female mice [163]. The differences 
between wild-type and KO are twice as many in males than in females; 
responses are similar for proteins related to actin function, to regulation of 

inflammation and to development but are different for protease 
balance/chaperone function. When KO mice are treated with surfactant, the 

pattern shifts less extensively and less rapidly in males than in females. 
 
 

8 Overview 
 

Much of what we have assembled in the previous sections amounts to lists. 
Indeed, each of the investigations we have reviewed appears to proceed 
without connection to the others. We try anyhow to present an overview on 

the whole material. While the main body of the text, with its many Tables, 
meets/fulfills the first aim of our writing, the paragraphs of the following 

subsections address the further aims we have set, summing up evidence from 
comparisons between/among the effects of the same KO in different organs 
(8.1) or, vice versa, of different KO in the same organ (8.2). A couple of 

further, mainly methodological, points are also dealt with (in 8.3 and 8.4). 
 

8.1 Same KO in different organs 
 
In section 5, we have singled out the few cases in which the effects of 

inactivating a single gene were studied in more than one organ. The 
examples we could present and discuss are few and diverse, still they allow 

drawing some tentative conclusions.  
Definitely, the outcome of the inactivation of a given gene is context-
dependent, as it varies from one tissue/organ to another and can be 

modulated by other experimental variables/treatments. Such differences are 
easily connected with the differences in the overall proteomes across the 

body districts: the varying protein assortment in each milieu results in a 
varying chance of direct interaction by protein-protein docking as well as in a 
varying regulation of protein biological activity through the concentration of 

key metabolites.  
With reference to embryologic derivation, higher similarities are observed 

between the effects in closely related (e.g. striated muscles) than in distantly 
related samples. The latter observation agrees with the finding, in wild-type 
animals, of a hierarchical correlation on the same basis among the proteomes 

of the various tissues [201]: the tighter the relationship, the closer the 
clustering based in protein expression. 
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8.2 Different KO in the same organ 
 

In a symmetrical way, we searched for possible overlaps among the effects 
on the proteome of a single tissue/organ out of the silencing of different genes. 

One of the spurs for such a search was a paper describing the outcome of the 
inactivation of 5 genes coding for mitochondrial proteins that regulate mtDNA 
gene expression in the heart (leucine-rich PPR motif-containing protein, 

mitochondrial (gene Lrpprc, UniProt entry Q6PB66), transcription termination 
factor 4, mitochondrial (gene Mterf4, UniProt entry Q9ZT96), DNA-directed 

RNA polymerase, mitochondrial (gene Polrmt, UniProt entry Q8BKF1), 
transcription factor A, mitochondrial (gene Tfam, UniProt entry P40630), 
twinkle protein, mitochondrial (gene Twnk, UniProt entry Q8CIW5)) [233]. 

Kühl et al. report that approximately 65% of the mitochondrial proteins are 
differentially abundant in all knockouts, with a concordant up-regulation of 

such processes as apoptosis, degradation and stress response, mitochondrial 
import and chaperones, and the mitochondrial 1C pathway. These results 
suggest that a stereotyped response may ensue from the removal of any of a 

number of relevant protein factors. 
To evaluate this possibility, we selected the liver as test organ. Contrary to 

skeletal muscles, it is univocally defined; contrary to brain or kidney, its 
macroscopic structure is homogenous. In this evaluation, we had full access 
to 29 manuscripts (they are marked with * in Table 2B). General interpretation 

turned out not to be easy, because of the high diversity of the topics, of the 
applied methods, and of the format of the data actually made available by the 

authors (sometimes primary quantitative data and regulation effects are 
missing as only heatmaps or affected networks are presented). Publication 
date spans 19 years, which implies a dissimilar development of proteomic 

technology and pathway analysis from one report to the other; additionally, 
the reports written for very different types of journals (from 

biological/biochemical to proteomic or pharmacologic), which put different 
emphasis on data documentation and interpretation. The background of the 
mouse strains is most often BL/6; in 22 cases KO is systemic, in 7 cases it is 

conditional; in one report primary hepatocytes are used as sample. Diet may 
be variable – high fat or high protein diet for study of metabolic changes; in 

some instances the effect of a second KO gene [60] or the influence of 
additional treatments (e.g. ethanol [44]; regeneration [40]; irradiation [55]) are 
investigated as well. 

The proteomic analysis is carried out by 2-DE in 12 papers (3 thereof with 
DIGE, one of them with partially depleted samples), with gel-free procedures 

in the other 17 cases (both with labeled, mainly iTRAQ, and label-free 
samples). 
The number of reported changes between wild-type and KO animals varies 

over a wide range – from a handful (e.g. 5) to several hundred regulated 
proteins. Making reference to the 23 papers from which data on individual 

proteins could be retrieved (they are marked with ** in Table 2B), average 
number of differentially regulated components is 410, with a huge standard 
deviation (849).  

In some cases, specific pathways are purposely targeted, e.g. PPAR [46, 71], 
collagen modifications [64], bile acids [58, 67]. Otherwise, the main affected 

pathways are usually "metabolic" (carbohydrate, lipid, amino acid metabolism). 
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Comparing proteomic and translational data results in almost equally long lists 
of either similarly or differently regulated genes/proteins [49]. 

 
The hypothesis of a common cellular stress response had been put forward a 

decade ago by the authors, Petrak et al. [206] and Wang et al. [294], who first 
carried out a meta-analysis of the proteomic data and found that a limited 
number of proteins were found affected in a very high percentage of cases, 

irrespective of the type of sample being analyzed as well as of the details of 
the experimental set-up. These papers have since been quoted in as many as 

66 proteomic reports. In one of those, the commonly altered items are 
subtracted from the list of affected proteins to stress the specific vs the 
generic effects of the exposure to a toxic substance [295], in two other the 

recurrence of findings is stressed from the title (‘the usual suspects revisited’ 
[296], ‘a common cellular response to different stressing stimuli’ [297]). 

This corpus of evidence was to spur our search in this specific direction. In the 
23 papers dealing with liver of KO animals in which data on individual proteins 
could be retrieved (marked with ** in Table 2B, see above), we manually 

searched for the protein families listed by Petrak et al. (Table 2 in [206]). The 
left panel of Figure 2 shows the number of their occurrences among the 

regulated sample components (range: 5/23-15/23; average = 5.7 ± 4.0). The 
right panel deals with relative values i.e. number of affected stress 
proteins/number of affected proteins, and plots the frequency of cases within 

specified % ranges. As marked in the inset, average relative value is close to 
10% but again with a huge standard deviation (almost 12%). In the test cases 

some of the stress proteins are very often involved, but the variability among 
the situations seems to rule out ‘stress’ as one of the main, and common, 
aspects in the outcome of genetic manipulation. 

 
8.3 Different ways, and different extent, of gene inactivation 

 
We could retrieve only one report that compares the effects of either systemic 
or tissue-specific inactivation of a given gene. In their paper, Sakellariou et al. 

[207] actually do it for two types of tissues, and in both cases they observe 
obvious differences between the outcomes of the alternative procedures. 

Figure 3 shows the heatmaps from the comparison with the appropriate wild-
type samples for muscle (top panels) and for peripheral nerve (bottom panels),  
either with systemic (left panels) or with conditional inactivation (right panels) 

of superoxide dismutase [Cu-Zn] (gene Sod1, UniProt entry P08228). In 
addition to the already reviewed effect of the context highlighted by the 

comparison between the two sample types (in section 5, Tissues/organs in 
comparison, with comments at the beginning of this section), the evaluation in 
parallel of the different modes of gene inactivation shows that – at least in the 

test case – conditional KO does not replicate the effects of systemic KO. 
Specifically, in the skeletal muscle, global inactivation of Sod1 results in 

altered redox homeostasis (increase in catalase, thioredoxin, peroxiredoxins) 
and mitochondrial dysfunction (including involvement of cytochrome c oxidase 
and ATP synthase), whereas specific deletion of the enzyme mainly affects 

cytoplasmic metabolism (including involvement of enolase and 
phosphoglucomutase). Proteolysis through the proteasome pathway (increase 

of both the catalytic subunits as components of the enzyme and of the 
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ubiquitinated proteins as its substrates) appears up-regulated in animals with 
the systemic but not with the conditional inactivation of Sod1. In the peripheral 

nerves, none of the animal models shows any induction in the antioxidant 
pathways; muscle-specific, but not systemic, ablation of Sod1 appears to alter 

the NFkB signaling pathway (IkB-alpha is reduced overall but increased in its 
phosphorylated form). In quantitative terms, in skeletal muscle the 
concentration of only 3 proteins is significantly affected by both types of gene 

inactivation (over a total of 25 for systemic and 17 for conditional KO) while in 
peripheral nerve it is so of 35 proteins (over a total of 108 affected by 

systemic and 92 by conditional KO); the names of these proteins are in red in 
Figure 3. Two of them, myosin light chain 1/3, skeletal muscle isoform (MYL1) 
and troponin I, fast skeletal muscle (TNNI2) are shared by both organs.  

While we are discussing here the varying effect of two modes of gene 
inactivation, the results in Figure 3 exemplify as well what was discussed in 

the previous lines about the varying effect of the same procedure on different 
organs. 
 

Another aspect of some interest is the effect of gene dose on the proteomic 
make up of a specimen. We have listed in 6.4 the reports dealing with 

comparisons other than +/+ vs -/- mice. Four of those are of some more 
interest as including the analysis of three conditions and thus allowing a 
detailed evaluation of the trends in protein abundance.  

The one by Lee et al. compares homozygous wild-type to hemizygous and 
homozygous KO; the experimental protocol is LC/MS after iTRAQ labeling. 

Overlap between the affected proteins is observed between -/+ and -/- but it 
does not exceed 25% of the observed significant changes vs +/+ [244]. The 
other three reports compare instead transgenic animals to homozygous wild-

type and to homozygous KO; the experimental protocol is in one case label-
free LC-MS/MS [110], while in two it is 2-DE [129, 179]. In the paper by 

Vicente-Rodriguez et al. the authors do not discuss the quantitative aspects of 
their results and only report pairwise spot volume ratios; in the cases (3/26) in 
which both the TG and the -/- condition are significantly different from +/+, no 

consistent tendency (either decrease or increase) is observed [129]. Hardt et 
al. present their results in the concise and visually-oriented format of 

heatmaps; overall differences are obvious among the specimens, and a trend 
may be recognized for many of the approx. 800 proteins seen to vary from -/- 
to +/+ to TG [110]. Finally, in their investigation, Liu et al. find a total of 21 

differentially abundant proteins; of the 42 pairwise comparisons they draw, 39 
demonstrate a significant difference between samples, one fails to do so 

between KO and wild-type, two between TG and wild-type, as if in these three 
cases the effects of genotype manipulation were plateauing at the level 
achieved in the hemizygous condition [179]. 

 
8.4 Same KO, different subproteomes 

 
Though we are focusing on whole cell/whole tissue investigations (except for 
listing studies on individual subproteomes in Table 12), we like to mention one 

report [40] that deals with the analysis of subcellular fractions, namely 
cytosolic proteins, nuclear soluble proteins, nuclear chromatin-bound proteins, 

and membrane proteins. The aim of this strategy is to increase the coverage 
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on the least soluble/hardly dissociable compartments, and the various findings 
are eventually summed up. This way, a total of 762 proteins is evaluated as 

differentially abundant between livers of wild-type mice and animals KO for 
survivin (baculoviral IAP repeat-containing protein 5, gene Birc5, UniProt entry 

O70201); of them, 529 are over-, and 223 under-represented in mouse liver 
as a result of gene inactivation. Since the enrichment in items annotated for 
the stated localization does not exceed 61%, 27%, 29% and 13%, 

respectively, of the total of proteins identified in each sample, as many as 147 
components are identified in 2, or 3, of the fractions.  

 
8.5 Conclusions 
 

What to conclude from all the above? Very much has been done in the field – 
the bibliography to this writing lists little less than 300 references – but, in the 

absence of a comprehensive plan in any of the possible areas of research, 
evidence is still too scattered to provide firm clues into such biological aspects 
as, for instance, the tissue-specific control of gene expression or the cross-

talk between metabolic and signaling pathways. Some hints in these 
directions surface from the few cases in which comparisons can be drawn 

between/among related investigations: we have compiled all the available 
data and added our observations and tentative comments. Unfortunately, 
investigations done till now deal with rather selected questions and 

proteins/genes, applying diverse methods of different sensitivity, and only to a 
limited extent offer raw data for further data-mining. A higher level of analysis, 

e.g. computer-based meta-analyses, shall become possible only if/when the 
primary database (e.g. in freely accessible public repositories) will provide 
comprehensive information on samples consistently defined and adequately 

linked to one another. Thus, we would like the reader to understand this 
review as a call for systematic investigation of the topic. 
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Figure legends 

 
Figure 1 – Outline of the procedures used to selectively prevent the 

expression of individual gene products. Targets may be at the DNA (top: red 
bar for exon, gray bar for intron) or the mRNA (middle: blue bar for translated, 
gray bar for untranslated region) or the protein (bottom: green bar) level. 

 
Figure 2: Evaluation of commonly affected proteins in KO mice liver. 
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Left: The ‘repeatedly identified differentially expressed proteins’ listed by 
Petrak et al. for proteomics experiments in mice [206] were manually 

searched for among the components significantly affected in the liver of KO 
animals, as reported in 23 reviewed papers (entries marked with ** in Table 

2B) the number of their occurrence was recorded. The abbreviations for 
protein names (meant to include all proteins of a family, all species of a 
protein, all subunits of a protein assembly) are entered in alphabetical order: 

ACT = actin, ANX = annexin, APO = apolipoproteins, ATP = ATP synthase, 
CAH = carbonic anhydrase, ENO = enolase, GST = glutathione S-transferase, 

HSP = heat shock protein, PDI = protein disulfide isomerase, PRD = 
peroxiredoxin, TUB = tubulin, TMP = tropomyosin, 1433 = 14-3-3 protein. 
Right: For each of the reviewed papers, the number of items from the above 

list was related to the total number of significantly affected proteins. Results 
are plotted as number of occurrences for selected proteins/all proteins ratio as 

grouped into 5-unit wide ranges.  
 
Figure 3 – Heatmaps from the comparison with the appropriate wild-type 

counterparts of samples from mice KO in superoxide dismutase [Cu-Zn] (gene 
Sod1). Top panels = skeletal muscle, bottom panels = peripheral nerve; left 

panels = systemic KO, right panels = conditional KO. The names (from entry 
names in the UniProt database https://www.uniprot.org) of the proteins 
affected by both types of inactivation are in red. Redrawn from Figures 3 and 

6 in [207].  
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Highlights 

 Gene inactivation may help understand the function of a protein in an 
organism. 

 Proteomics on specimens from KO animals is an expedite way to 
obtain relevant data. 

 So far, the outcome of inactivation was most often addressed in 

individual tissues. 

 The outcome is organ-specific and influenced by the mode of gene 

inactivation. 

 While often affected, stress proteins only feature a weak association 

with KO. 
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