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Abstract 

 

Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce 

additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid 

(RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is 

supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) 

inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such 

having (hypothetically) different MIEs but which are eventually involved in the same adverse 

outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested 

MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST 

software. The common target was the branchial apparatus. In silico results confirmed azole-related 

CYP26 inhibition and a weak general VPA inhibition on the tested HDACs.  Unexpectedly, VPA 

showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic 

sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. 

Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the 

same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two 

converging AOPs. 
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1. Introduction 

 

Craniofacial malformations represent more than one-third of all congenital birth defects (cleft lip 

and/or palate alone or associated with other cranio-facial deformities, 1:700 live births; cranio-facial 

anomalies other than cleft lip and palate, 1:1600 newborns) (Mossey et al., 2009). 

Craniofacial defects have a multifactorial etiology, involving both genetic (Twigg and Wilkie, 

2015) and environmental risk factors (Mossey et al., 2009.). Some risk factors inducing cranio-

facial defects have been identified, such as maternal active and passive smoking (Mossey et al., 

2011), (Sabbagh et al., 2015), alcohol consumption (Burns et al., 1974), Western-type diet 

(Vujkovic et al., 2007), maternal diabetes (Spilson et al., 2001), use of medicaments, such as some 

antiepileptic drugs (Nguyen et al., 2009), (Alsaad et al., 2015) and retinoids (Suuberg, 2019), 

exposure to certain pesticides (Romitti et al., 2007) during the first trimester of pregnancy. There 

are indications that combined exposure to certain risk factors, such as alcohol and tobacco, have 

additive effects (Goncalves Leite and Koifman, 2009). 

Craniofacial development entails a complex three-dimensional morphogenetic process, regulated by 

the morphogen retinoic acid (RA). A specific relationship has been described between RA gradient 

in different hindbrain areas, Hox gene expression, neural crest cells migration, pharyngeal arch 

formation and facial morphogenesis (Osumi-Yamashita, 1996) (Figure 1). Pharyngeal arches 

(branchial arches, BAs) are symmetrical transient structures common to vertebrates at their 

phylotypic stage. The first BA (oral) is organized in an anterior maxillary process and in a posterior 

ventral mandibular process; normally the second BA (hyoid) appears well separated from the first 

(Figure 1). A wide spectrum of craniofacial defects (among them: hemifacial microsomia, 

mandibulofacial dysostosis, branchio-oto-renal syndrome, Pierre Robin sequence and Nager 

acrofacial dysostosis) are classified as first and second branchial arch syndromes (Senggen et al., 

2011). It has been shown that excessive RA concentrations at the time of facial morphogenesis 



leads to facial malformations (Lammer et al., 1985). RA gradient formation and maintenance are 

ensured by the correct equilibrium between RA synthesis and inactivation by CYP26 isoforms 

(Oosterveen et al., 2004). The Hox gene regulation machinery includes the histone deacetylase 

enzyme (HDAC, mainly the isoform HDAC7), associated with the co-repressor complex (Minoux 

and Rijli, 2010) (Figure 1). 

Making reference to molecular sequences in normal morphogenesis, it is possible to draw a 

hypothetical adverse outcome pathway (AOP). AOP describes a framework of information about 

the progression of toxicity events, starting from one or more molecular initiating events (MIEs), 

that trigger a sequence of biological events (key events, KEs) and leading to the final apical adverse 

outcome (AO). Within this scheme, different chemicals that switch on the same MIE can trigger the 

same KEs cascade and contribute to the same AO; also, switching a different MIE can trigger the 

same or partially overlapping cascade of KEs that leads to the same AO (Bal-Price and Meek, 

2017). Finally, the scientifically-based description of the proposed AOPs could be also useful to 

better understand the pathogenesis of craniofacial defects related to genetic syndromes as well, 

contributing also to identify relevant gene polymorphisms that might increase the susceptibility to 

environmental factors for malformations, that appear to be mostly multifactorial. Also, 

understanding the dismorphogenic pathways would help in the discovery of those environmental 

factors that may contribute to the incidence of malformations.  Based on a critical match between 

known or hypothesized molecular interactions of some chemicals, that induce facial defects, and 

relevant KEs for facial morphogenesis an AOP is proposed and shown in Figure 2. 

In detail, specific RA-like teratogenic effects at the level of the branchial structures were correlated 

to exposure to certain antifungal azoles, when tested in the post-implantation rat whole embryo 

cultures (WEC) (Di Renzo et al., 2019). The suggested hypothetical pathogenic pathway for azoles, 

which includes CYP26 inhibition as MIE (Menegola et al., 2006), was the basis for developing a 

quantitative AOP for craniofacial malformations (Battistoni et al., 2019). 



Antiepileptic drugs, including valproic acid (VPA), are correlated to multiple malformations (neural 

tube, cardiac, craniofacial, skeletal and limb defects) classified as Fetal Valproate Syndrome 

(Ornoy, 2009; Weston et al., 2016). As far as axial skeletal defects are concerned, a direct 

relationship with HDAC inhibition was previously suggested (Menegola et al., 2005b), while no 

MIEs have been identified for other VPA-related teratogenic outcomes, including facial defects. 

The aims of the present work are to: 1) investigate, in more detail, the suggested AOP outlined in 

Figure 2; 2) to rank the relative potencies of some chemicals, associated with craniofacial defects in 

humans, using the WEC in vitro method; 3) investigate the suggested MIEs, matching the in vitro 

results with in silico approaches. Clarifying an AOP and defining quantitative KE relationships will 

be helpful in devising experimental studies with appropriate end-point measurements, e.g. to assess 

the combined effects of exposure to chemicals triggering different MIEs but leading to the same 

AO. In particular, these experiments are needed to assess to what extent and in which conditions 

dose-additivity for such compounds does apply. In fact, while it is biologically plausible that, once 

activated the common KE, co-exposure will add on the effect, the question would be whether at 

environmentally relevant exposures i.e. at doses not triggering the AOP cascade the addition will or 

will not occur. 

The molecules selected for the in silico and in vitro experiments are three azole pesticides 

(triadimefon, FON, cyproconazole, CYPRO, and flusilazole, FLUSI), the histone deacetylases 

inhibitor valproic acid (VPA), and RA (as reference molecule). Among those previously 

characterized (Di Renzo et al., 2019), the selected azoles are known to induce both branchial defects 

in vitro (Menegola et al., 2000; Menegola et al., 2001; Di Renzo et al., 2011). Moreover in 

regulatory studies on developmental toxicity, assessed in the frame of EU registration, 

cyproconazole and flusilazole showed facial defects, in particular cleft palate in rats, after in utero 

exposure (EFSA 2010, JMPR 2010, JMPR 2007). Additionally, administration of FON to 

pregnant animals, showed increased fetal incidence of cleft palate in rats and rabbits (JMPR 

2004) and mice (Menegola et al., 2005a). RA and VPA are related to dysmorphogenic effects, 



including branchial defects in vitro (Gofflot et al., 1996; Di Renzo et al., 2019) and to facial 

dysmorphology in humans (Lammer et al., 1985; DiLiberti et al., 1984). 

 

2. Materials and Methods 

 

2.1 WEC 

2.1.1 Materials and compound preparation. The medium used for the extraction of embryos from 

the uteri was sterilized Tyrode solution (Sigma); the medium used for the postimplantation whole 

embryo culture was undiluted heat inactivated rat serum added with antibiotics (penicillin 100 

IU/mL culture medium and streptomycin 100µg/mL culture medium, Sigma). All the tested 

compounds were purchased by Sigma, Italy (PESTANAL®, analytic grade). Azoles (FON, 

CYPRO, FLUSI, dissolved in ethanol in order to reach the final ethanol concentration in the 

medium equal to 17.35 mM), RA (dissolved in DMSO), VPA (Sodium Valproate, dissolved in 

Tyrode) were added to the culture medium in order to reach the final concentration of the different 

experimental groups (Figure 3). For each dose-response experiment, a group exposed to the relevant 

solvent (dose 0) was prepared. 

 

2.1.2 Embryo culture. All animal use protocols were approved by the Ministry of Health - 

Department for Veterinary Public Health, Nutrition and Food Safety committee. In compliance with 

EU Directive 2010/63/EU, animals were treated humanely and with regard for alleviation of 

suffering. Virgin female CD:Crl rats (Charles River, Calco, Italy), housed in a thermostatically 

maintained room (T = 22 ± 2 °C; relative humidity 55 ± 5%) with a 12 h light cycle (light from 6.00 

a.m. to 6.00 p.m.), free access to food (Italiana Mangimi, Settimo Milanese, Italy) and tap water, 

were caged overnight with males of proven fertility. Embryos were explanted from untreated 

pregnant rats at E9.5 (early neurula stage, 1–3 somites; day of positive vaginal smear = 0) and 

cultured according to the New’s method (New, 1978) in 20 ml glass bottles (5 embryos/bottle), 



containing 5 mL culture medium and test molecules at different concentrations. The bottles, 

inserted in a thermostatic (37.8°C) roller (30 rpm) apparatus, were periodically gas equilibrated 

according to Giavini et al., 1992 (Giavini et al., 1992). After 48 h of culture, embryos were 

morphologically examined under a dissecting microscope in order to evaluate any branchial or 

extra-branchial abnormality. At least a triplicate was performed for each group.  

 

2.1.3 Data analysis 

Statistical evaluation was applied on frequencies (chi-square test for multiple comparison), setting 

the level of significance at p<0.05. 

PROAST analysis (65.5 version) was applied on branchial outcomes, because this apparatus was 

the common target for all the tested substances and the target of the present study. Data were 

modelled to obtain the single dose-response curves (from these curves, the benchmark doses at 50% 

- BMR50) and the relative potency factors (RPFs, RA being the reference compound).  

 

2.2 Molecular modeling 

The primary structures of the selected rat enzymes were downloaded from the UniProt Protein 

Knowledgebase database (“UniProt,”). After a protein BLAST search of the RCSB Protein Data 

Bank (PDB) database (“RCSB PDB: Homepage,”) for homologues to the selected enzymes, the 

crystallographic structures reported in Table 1 were set as templates, downloaded from the PDB and 

structure-prepared using the Structure Preparation program of the MOE 2019.01 suite (Chemical 

Computing Group), in order to address any crystallographic issues and to add missing 

atoms/residues. All the alignments were produced through the Clustal Omega software (“Clustal 

Omega < Multiple Sequence Alignment < EMBL-EBI,”) and manually checked. All the 

comparative models were produced by the MOE Homology Model program of the Protein module 

with default settings, also importing both the ligand and the cofactor co-crystallized with the 



template enzymes. The quality of the final models was carefully checked with the MOE Protein 

Geometry program. 

The catalytic sites of the selected enzymes were identified through the MOE Site Finder program, 

which uses a geometric approach to list putative binding sites in a protein, starting from its three-

dimensional structure. The correspondence with the co-modelled ligand was then carefully checked. 

Selected chemicals were downloaded from the PubChem database (“PubChem,”). Each entry was 

converted into a three-dimensional structure, and energy minimized, with the MOE Energy 

Minimize program, down to a RMS gradient of 0.05 kcal/mol/Å2. Stereochemistry of each structure 

was carefully checked. Molecular docking was carried out through the MOE Dock program. The 

Triangle Matcher placement algorithm was used for exploring only the enzyme catalytic site, and 

the London dG empirical scoring function was applied for sorting the poses. The 30 top-scoring 

poses were refined through molecular mechanics, considering each receptor as a rigid body, and the 

refined complexes were scored through the GBVI/WSA dG empirical scoring function, selecting 

the five top-scoring poses. All the co-modelled ligands were used for validating the molecular 

docking procedure on 3-D models, obtaining docking poses that are compliant with the original 

structures. 

 

3. Results 

 

3.1 WEC 

All tested molecules induced concentration-related branchial defects (BA fused, Table 2); RA and 

VPA induced multiple district anomalies including extra-branchial abnormalities (neural tube 

defects, somite abnormalities, hook-shaped tail). 

PROAST analysis on branchial outcomes was first performed in order to compare the fit to the 

single dataset (Figure 3) with the fit to the combined dataset (Figure 4), using in both cases 

exponential model family tests. As the log-likelihood ratio test did not reject the equal steepness 



assumption (p = 0.88 with log-likelihood of separate fits = -180.61, log-likelihood of the overall fit 

= -182.12, degrees of freedom = 7) (Table 3), the benchmark doses (BMDs) for benchmark 

response (BMR) at 50% and relative potency factors (RPFs) were estimated using the combined 

model fit (Figures 4, 5). The evaluation of CIs of RPFs suggests potency ranking as follow: RA > 

FLUSI > CYPRO/FON > VPA (Figure 6). Even if FLUSI resulted at least one order of magnitude 

less potent than RA, it resulted nearly one order of magnitude more potent than the other tested 

azoles. VPA was the less potent of all, at least four orders of magnitude less potent than RA. 

 

3.2 Docking 

Table 4 shows the binding free energies of the chemicals docked into the selected enzymes. As 

expected, RA (the natural CYP26 substrate) is the best CYP26 isoenzymes ligand, since it shows 

the best ∆G with respect to the other tested chemicals, and, according to its binding free energy 

(∆G) values, it is possible to classify RA as a strong binder of the three CYP26 isoenzymes. Azoles, 

with a comparable ∆G value for each CYP26 isoenzyme, can be classified as good ligands, while 

VPA, with the least negative ∆G values for the three CYP26 isoenzymes, can be classified as a 

weak ligand. 

All the binding poses were carefully checked, pointing out that in each CYP26 isoenzyme all the 

selected chemicals are located near the heme Fe2+ ion. In particular, all the RA binding poses are 

comparable with the placement of the co-modelled RA (Figure 7A), while all the azoles show the 

azolic ring exposed to the heme group, in agreement with Pautus and colleagues (Pautus et al., 

2009). VPA can accommodate itself in the CYP26 isoenzyme binding sites in two different modes: 

in the first, observed for CYP26A1 and CYP26C1, VPA is close to the heme group, while in the 

second, observed for CYP26B1, VPA is far from the catalytic site (Figure 7B), suggesting that VPA 

is not a ligand for this isoenzyme. 

On the contrary, VPA may be classified as ligand of HDAC isoenzymes, whereas RA could be only 

hypothesized as a putative weak interactor. In fact, VPA binds a very deep region of the catalytic 



site, near the Zn2+ ion. According to Sixto-López et al 2014 (Sixto-López et al., 2014) the 

carboxylic group of VPA establishes metal/ion interaction with Zn2+ in all the HDAC isoenzymes; 

moreover, the computed affinity (∆G) of VPA for HDAC8 agrees with other in silico data 

(Bermúdez-Lugo et al., 2012). Differently, for each tested HDAC isoenzyme, the RA carboxylic 

group cannot interact with the Zn2+ ion, while the carbocyclic ring is not buried in the binding site, 

but partially exposed to the solvent. Differently, all the investigated azoles do not bind the catalytic 

site of tested HDACs. No azole establishes interaction with Zn2+ ion. For this reason, azoles cannot 

be classified as HDACs ligands. 

 

4. Discussion 

 

The aim of the present work was to rank the relative potencies of selected chemicals associated with 

craniofacial defects in humans and to investigate the suggested AOP shown in Figure 2. Data 

obtained by in vitro exposure (WEC) to the different chemicals and modeled by PROAST analysis 

allowed potency ranking with RA more active, as expected. Azoles were less effective than RA 

(with the following ranking: FLUSI > CYPRO/FON) and VPA was even less active. The match 

between the in vitro results and in silico data showed a complex picture and unexpected results. In 

contrast to the initial hypothesis of different MIEs (CYP26 inhibition for azoles, HDAC inhibition 

for VPA) involved in inducing a similar adverse outcome (branchial defects, as observed after 

embryo evaluation), the in silico approach pointed out a more complex interaction network. 

Literature data describe the time course of CYP 26 isozyme expression in rodent embryos. CYP 

26A1 is initially expressed in the anterior neural plate during gastrulation (Kudoh et al., 2002) and 

later has a key role in the developing hindbrain to precisely restrict the field of endogenous RA 

signalling (White and Schilling, 2008). In contrast to CYP26A1, CYP26B1 expression appears later 

and is associated with a more dynamic pattern in the hindbrain. CYP26C1 initially appears in the 

head mesenchyme (Uehara et al., 2007), and is then expressed after gastrulation in specific 



hindbrain regions. Using Cyp26a1−/−Cyp26c1−/− mice, Uehara et al (2007) suggested that the 

activity of CYP26A1 and CYP26C1 is required for correct neural antero-posterior patterning and 

production of migratory cranial neural crest cells colonizing craniofacial regions. Consistent with 

the hypothesis, that Cyp26a1−/−Cyp26c1−/− phenotype showed branchial abnormalities actually 

similar to those observed in our in vitro experiment. 

Even if with an affinity lower than the natural substrate (RA), all the tested azoles can bind CYP26 

isoenzymes with a significant predicted binding free energy, showing a well conserved binding 

mode, already described in literature (Pautus et al., 2009), in which the azolic ring is arranged close 

to the heme Fe2+ ion. Since no azole metabolites oxidized in the azolic ring have been reported, and 

since our binding poses do not satisfy geometrical restrain reported in Pautus and colleagues 

(Pautus et al., 2009) and mandatory for the enzymatic reaction, our data suggest that for CYP26 

isoenzymes azoles are not substrates but competitive inhibitors. In contrast, as expected, RA is the 

only chemical that can establish a specific interaction with the heme group in all the three CYP26 

isoenzymes. 

Contrary to the earlier assumption regarding the ubiquitous expression of HDACs (Weichert, 2009), 

recent studies clearly demonstrated that also HDACs are expressed in space- and time-specific 

manner during development (Tab 5). As far as the craniofacial morphogenesis is concerned, a 

strong expression is described for HDAC1 and HDAC2 at the branchial arch level in mouse E10 

embryos (Murko et al., 2010). As shown by Milstone et al (Milstone et al., 2017) HDAC1 and 

HDAC2 are expressed in NCCs and their derivatives (including branchial arches) in mouse 

embryos and regulate branchial arch formation. HDAC1 and HDAC2 have already been supposed 

to be implicated in congenital craniofacial defects seen in humans (Hudson et al., 2014; De Souza et 

al., 2015; Matsumoto et al., 2015) In addition, HDAC8 seems to regulate skull morphogenesis only 

during late gestation, confirming a unique role of HDAC1 and HDAC2 within early craniofacial 

embryogenesis (Haberland et al., 2009). Furthermore, expression in multiple extra cranio-facial 

districts (including the developing brain) was described for a number of HDACs (HDAC1, 



HDAC2, HDAC3, HDAC8) in E10 mouse embryos (Murko et al., 2010), whereas, consistent with 

HDAC7 null mice phenotype, HDAC7 expression in E9.5 mouse embryos was limited to the 

developing vascular endothelium (Tab  65) (Chang et al., 2006). 

VPA is described as a weak HDAC inhibitor (Eckschlager et al., 2017) and this seems an 

interesting feature for repositioning this antiepileptic drug as anticancer (Eckschlager et al., 2017; 

Krauze et al., 2015; Suraweera et al., 2018). Its HDAC inhibitory capability was previously 

demonstrated also in mouse embryos nuclear extracts, suggesting a specific inhibitory activity on 

nuclear HDACs expressed during embryo development (Di Renzo et al., 2007). 

In silico results on VPA-HDACs docking (Tab. 5) confirm a weak general inhibitory activity of 

VPA on the tested HDACs, including, but not exclusively, HDAC1 and 2. This activity on HDAC1 

and 2 could be considered supportive for the corroboration as a MIE in VPA teratogenic effects. 

Unexpectedly, VPA shows, in addition, a weak, but not marginal, capability to enter the CYP 26A1 

and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, but 

with a difference of approximatively two orders of magnitude in comparison with azoles. 

Approximated Kis, obtained from the binding free energy values, could be compatible with the 

tested active concentrations, and this could be considered at the basis of an additional MIE. 

Conversely, the binding free energy of RA suggests only a marginal role of this morphogen on 

HDAC activity that, if demonstrated, would become appreciable only at definitively higher 

concentrations than those tested and resulted teratogenic. These complex interactions could be 

related to the documented multilevel modulation of different RA-dependent gene activators. 

Together with the varying expression of the target enzymes in space and time, this could explain the 

malformations induced by VPA as well as by azoles. 

Our findings thus suggest a new picture related to the evaluated AO including similar (azoles) and 

partially dissimilar (azoles-VPA) molecular targets. Consequently two different AOPs, confluent on 

the same AO, can be described. While azoles seem to be involved in a linear pathway, VPA MIEs 



(HDAC and CYP26 inhibition) impinge on the two converging AOPs affecting craniofacial 

structures (Figure 8). 

 

 

5. Conclusions 

The present tiered approach (in silico docking in order to evaluate hypothetical MIEs; in vitro WEC 

approach in order to obtain robust data to model) resulted adequate to improve the hypothetical 

AOP for craniofacial defects. 

Interestingly, this approach confirmed the supposed MIEs but also suggested that at least an 

additional MIE can be considered to explain VPA-related craniofacial defects. 

Future experiments on mixtures could be aimed in order to deep evaluate the effects of binary 

mixtures of azoles and VPA. 

The present work assumes also a particular interest considering that RA pathways are currently an 

emerging issue in toxicology, and chemicals able to interfere with RA pathway have recently 

received more and more attention (Wu et al., 2014; Chen and Reese, 2016). 
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Highlights  

• Different molecules can induce the same adverse outcome (AO) 

• Similar or dissimilar Mode of Action can be involved in the same pathway (AOP) 

• In silico approach can predict different relative potencies 

• In vitro approach is useful to obtain robust data for mathematical modelling 
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Tables 

 

Table 1 – Reference structures for homology modelling the selected proteins involved in MOAs craniofacial malformations 

 

 

Protein UniProtKB 

code 

Template RCSB 

PDB 

code 

Identity 

percent 

Reference 

CYP26A1_RAT G3V861 CP120_SYNY3 2VE3 34.8% 39 

CYP26B1_RAT G3V7X8 CP120_SYNY3 2VE3 35.1% 39 

CYP26C1_RAT D4AAL3 CP120_SYNY3 2VE3 33.5% 39 

HDAC1_RAT Q4QQW4 HDAC1_HUMAN  4BKX 99.2% 40 

HDAC2_RAT B1WBY8 HDAC2_HUMAN  4LY1 99.0% 41 

HDAC3_RAT Q6P6W3 HDAC3_HUMAN 4A69 99.8% 42 

HDAC4_RAT Q99P99 HDAC4_HUMAN  2VQM 93.4% 43  

HDAC7_RAT A0A0G2K6B1 HDAC7_HUMAN  3C10 92.4% 44 



HDAC8_RAT B1WC68 HDAC8_HUMAN  5DC5 96.3% 45 

HDAC10_RAT E5RQ38 HDAC5_HUMAN 5TD7 57.5% 46 

 

 

 

 



 

 

Table 2. Percentage of embryos with malformations at the branchial arches (BA).  

Grey columns indicate concentration levels at witch extra-branchial defects were also observed.        

 

RETINOIC ACID RA 0 µµµµ M RA 0.025 µµµµ M RA 0.05 µµµµ M RA 0.125 µµµµ M RA 0.25 µµµµ M RA 0.5 µµµµ M RA 1 µµµµ M

BA abnormalities  0.0 0.0 37.5 73.7 88.2 85.7 100.0

CYPROCONAZOLE CYPRO 0 µµµµ M CYPRO 3.9 µµµµ M CYPRO 7.8 µµµµ M CYPRO 15 µµµµ M CYPRO 31 µµµµ M CYPRO 46.8 µµµµ M CYPRO 62.5 µµµµ M CYPRO 125 µµµµ M CYPRO 250 µµµµ M

BA abnormalities   0.0 28.6 20.0 22.2 90.0 100.0 100.0 100.0 100.0

FLUSILAZOLE FLUSI 0 µµµµ M FLUSI 1.56 µµµµ M FLUSI 3.125 µµµµ M FLUSI 4.8 µµµµ M FLUSI 6.25 µµµµ M FLUSI 7.7 µµµµ M FLUSI 9.375 µµµµ M FLUSI 10.1 µµµµ M FLUSI 12.5 µµµµ M

BA abnormalities   0.0 0.0 36.4 100.0 77.8 100.0 100.0 100.0 100.0

TRIADIMEFON FON 0 µµµµ M FON 6.25 µµµµ M FON 12.5 µµµµ M FON 25 µµµµ M FON 26.7 µµµµ M FON 42.85 µµµµ M FON 50 µµµµ M FON 56 µµµµ M FON 125 µµµµ M

BA abnormalities   0.0 0.0 18.2 37.5 90.0 100.0 100.0 100.0 100.0

VALPROIC ACID VPA 0 µµµµ M VPA 15.625 µµµµ M VPA 31.25 µµµµ M VPA 62.5 µµµµ M VPA 125 µµµµ M VPA 250 µµµµ M VPA 375 µµµµ M VPA 500 µµµµ M VPA 750 µµµµ M

BA abnormalities   0.0 0.0 25.0 17.6 43.8 36.4 50 50 80



 

 

Table 3. Parameters obtained by PROAST analysis, fitting separate dataset for each compound and combined dataset for all. BMD = 

benchmark dose;  

BMR= benchmark response. 

 

 

  

BMD for BMR 50% 

(µM) 

 

log-likelihood   

RA 0.16 -57.69 

CYPRO 18.1 -26.71 

FON 22.15 -16.67 

FLUSI 3.7 -17.18 

VPA 403.8 -62.36 

   



COMBINED 

(RA as index) 

 

0.125 

 

-182.12 

 

 

 



 

 

 

Table 4.  Binding free energy values of tested molecules. Values are express in kcal/mol. 

* These ligands bind far from the catalytic site (more details in the text). 

 

 

 

 

 

Chemical 
CYP 

26A1 

CYP 

26B1 

CYP 

26C1 
HDAC1 HDAC2 HDAC3 HDAC4 HDAC7 HDAC8 HDAC10 

FLUSI -7.3 -7.0 -7.7 * * * * * * * 

FON -7.4 -7.5 -7.5 * * * * * * * 

CYPRO -7.2 -7.0 -7.5 * * * * * * * 

RA -8.9 -8.9 -10.2 -6.1 -5.7 -5.7 -5.4 -5.2 -6.1 -6.0 

VPA -5.6 * -6.0 -4.9 -4.9 -3.1 -4.1 -4.1 -5.0 -4.4 



 

Table  5. Summary of HDAC expression during mouse E10 embryogenesis (corresponding to the rat stage at the end of the culture period).    

 

 

ISOFORMS EXRESSION Ref ISOFORMS Knockout phenotype Ref 

HDAC1 

Brain, branchial arches, 

limb buds, otic vesicle 

Murko et al., 

2010 HDAC1 Early death 

Lagger et al 2002; Montgomery et al 

2007 

HDAC2 

Brain, branchial arches 

(distal) 

Murko et al., 

2010 HDAC2 Cardiac defects/perinatal lethality 

Montgomery et al, 2007 Trivedy et al 

2007 

HDAC3 

Forebrain, midbrain, 

otic vesicle 

Murko et al., 

2010 HDAC3 Early lethality; cardiovascular defects 

Montgomery et al 2008, Knutson et al 2008, 

Singh et al., 2011 

HDAC8 Forebrain, midbrain 

Murko et al., 

2010 HDAC8 

Cranial defects related to specific cranial 

NCCs deficiency 

Haberland et al., 

2019 

HDAC7 Developing cardio-Chang et al., HDAC7 Vascular dilatation and Chang et al., 2006 



vascular tissues 2006 rupture/midgestation death 

 

 

 

 

 



Figure legends 

 

Figure 1. Morphogenetic events involved in craniofacial development. The morphogenic 

pathway leads to the formation of specified NCCs migrating at the level of fronto-nasal process and 

into distinct branchial arches. In particular, the first branchial arch is crucial for facial skeletal 

organization and is subdivided into a maxillary process (white) also responsible for secondary 

palate organization and into a mandibular process (black). Dotted the fronto-nasal elements. 

RA= retinoic acid; RDH= retinol dehydrogenase; RALDH= retinaldehyde dehydrogenase; 

RAR/RXR= retinoic acid nuclear receptors; HDAC= histone deacetylase; HAT= histone 

acetyltransferase; NCCs= neural crest cells.  

 

Figure 2. Hypothetical adverse outcome pathways (AOPs) confluent to the same adverse 

outcome (AO, facial defects). The tested azoles (FON, CYPRO, FLUSI) and valproic acid (VPA), 

causing different molecular initiating events (MIEs, black), hypothetically trigger  key events (KEs, 

grey) leading to the common adverse outcome (AO, dark grey). 

 

Figure 3. Single dose-response curves. CYPRO, FON, FLUSI, VPA and RA were modelled in 

terms of benchmark dose (BMD) using PROAST software. 

 

Figure 4. Evaluation of the benchmark doses (BMDs) for benchmark response at 50% of 

CYPRO, FON, FLUSI, VPA in respect to RA. From left to right: RA-FLUSI-CYPRO-FON-

VPA. 

 

Figure 5. Evaluation of the relative potency factors (RPFs) of the effects of CYPRO, FON, 

FLUSI, VPA in respect to RA. From left to right: RA-FLUSI-CYPRO-FON-VPA. 

 



Figure 6. Plot of relative potency factors (RPFs) with confidence intervals (CIs) considering 

RA potency=1.  

 

 

Figure 7. Binding poses of RA (A) and VPA (B). CYP26A1, CYP26B1 and CYP26C1 are 

represented as blue, orange and violet ribbon, respectively. 

 

Figure 8. Adverse outcome pathways (AOPs) leading to the same adverse outcome (AO, facial 

defects), as suggested by data of the present work. Both the tested azoles (FON, CYPRO, 

FLUSI) and valproic acid (VPA), even if with different affinity, are involved in CYP26 inhibition. 

VPA is also involved in HDAC inhibition. MIEs trigger  different key events (KEs, grey) leading to 

a common KE (abnormal Hox gene expression) and, finally to the common adverse outcome (AO, 

dark grey). 

 

 

 



RETINOIC ACID RA 0 µµµµM RA 0.025 µµµµM RA 0.05 µµµµM RA 0.125 µµµµM RA 0.25 µµµµM RA 0.5 µµµµM RA 1 µµµµM 
        

BA abnormalities   0.0 0.0 37.5 73.7 88.2 85.7 100.0 
        

CYPROCONAZOLE CYPRO 0 
µµµµM 

CYPRO 3.9 
µµµµM 

CYPRO 7.8 
µµµµM 

CYPRO 15 
µµµµM 

CYPRO 31 
µµµµM 

CYPRO 46.8 
µµµµM 

CYPRO 62.5 
µµµµM 

        
BA abnormalities    0.0 28.6 20.0 22.2 90.0 100.0 100.0 

        
FLUSILAZOLE FLUSI 0 µµµµM FLUSI 1.56 

µµµµM 
FLUSI 3.125 

µµµµM 
FLUSI 4.8 

µµµµM 
FLUSI 6.25 

µµµµM 
FLUSI 7.7 

µµµµM 
FLUSI 9.375 

µµµµM 
        

BA abnormalities    0.0 0.0 36.4 100.0 77.8 100.0 100.0 
        

TRIADIMEFON FON 0 µµµµM FON 6.25 
µµµµM 

FON 12.5 
µµµµM 

FON 25 µµµµM FON 26.7 
µµµµM 

FON 42.85 
µµµµM 

FON 50 µµµµM 

        
BA abnormalities    0.0 0.0 18.2 37.5 90.0 100.0 100.0 

        
VALPROIC ACID VPA 0 µµµµM VPA 15.625 

µµµµM 
VPA 31.25 

µµµµM 
VPA 62.5 µµµµM VPA 125 µµµµM VPA 250 µµµµM VPA 375 µµµµM 

        
BA abnormalities    0.0 0.0 25.0 17.6 43.8 36.4 50 
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