81 research outputs found

    Late-onset hypogonadism (LOH) : an emerging pathophysiological entity requiring the physician's attention

    Get PDF
    Late-onset hypogonadism (LOH) is an emerging pathophysiological entity. Not everybody is familiar with LOH or even recognizes its existence. Since the 19th century women's life expectancy has become progressively greater than that of men and therefore their ailments associated with aging from the climacteric onwards attracted medical attention much earlier than male aging health problems. In addition, male aging problems start at a later age than the climacteric occurs in women. However, men's life expectancy is also continuously increasing: in Europe a newborn male now has a life expectancy of about 75 years, and a 60-year-old man has a statistical possibility of reaching 80 years of age. The increasing number of aging men forces physicians to focus on their health problems.peer-reviewe

    Paternal age and reproduction

    Get PDF
    BACKGROUND Due to various sociological factors, couples in developed countries are increasingly delaying childbearing. Besides ethical, economical and sociological issues, this trend presents us with several complex problems in reproduction. Although it is well-known that maternal age has a negative effect on fertility and increases the risk of adverse outcome during pregnancy and in offspring, the paternal influence on these outcomes is less well researched and not well-known. METHODS We performed a systematic search of PubMed, and retrieved original articles and review articles to update our previous survey in this journal. RESULTS This review highlights the link between male age and genetic abnormalities in the germ line and summarizes the knowledge about the effects of paternal age on reproductive function and outcome. Increasing paternal age can be associated with decreasing androgen levels, decreased sexual activity, alterations of testicular morphology and a deterioration of semen quality (volume, motility, morphology). Increased paternal age has an influence on DNA integrity of sperm, increases telomere length in spermatozoa and is suggested to have epigenetic effects. These changes may, at least in part, be responsible for the association of paternal age over 40 years with reduced fertility, an increase in pregnancy-associated complications and adverse outcome in the offspring. CONCLUSION Although higher maternal age can be an indication for intensive prenatal diagnosis, including invasive diagnostics, consideration of the available evidence suggests that paternal age itself, however, provides no rationale for invasive procedure

    FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting

    Get PDF
    Background: Cryopreservation and transplantation of ovarian tissue is one option for re-establishing ovarian function, but optimal conditions for graft sustainment and follicular survival are still considered experimental. The present study aims to analyze the effect of FSH treatment on the resting follicle pool in fresh and cryopreserved primate ovarian tissues following xenografting. Methods: Ovarian tissues from adult marmosets were grafted freshly or following cryopreservation to ovarectomized nude mice treated with FSH 25 IU twice daily post transplantation or left untreated as controls. Grafts were retrieved 2 or 4 weeks after transplantation to evaluate the number and morphological appearance of follicles. Results: Early start of FSH treatment within 1 week following transplantation partly prevents primordial follicle loss in fresh and frozen-thawed tissues, whereas after a 3 weeks time interval this effect is present only in fresh tissues. A similar positive effect of early, but not later FSH treatment on primary follicles is seen in fresh tissues compared to only marginal effects in frozen-thawed tissues. The percentage of morphologically normal follicles is generally increased in FSH treated tissues, whereas the percentage of primary follicles over all primordial and primary follicles is increased by FSH only in freshly-grafted tissues. Conclusions: FSH treatment alleviates depletion of the resting follicle pool and promotes normal follicular morphology both in freshly and frozen-thawed grafted tissues. In previously cryopreserved tissues, applying to most of the tissues intended for clinical use in fertility preservation attempts, its positive effect on primordial follicle numbers and potential graft sustainment is dependent on an early start of treatment within one week of transplantation

    FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting

    Full text link
    Background: Cryopreservation and transplantation of ovarian tissue is one option for re-establishing ovarian function, but optimal conditions for graft sustainment and follicular survival are still considered experimental. The present study aims to analyze the effect of FSH treatment on the resting follicle pool in fresh and cryopreserved primate ovarian tissues following xenografting. Methods: Ovarian tissues from adult marmosets were grafted freshly or following cryopreservation to ovarectomized nude mice treated with FSH 25 IU twice daily post transplantation or left untreated as controls. Grafts were retrieved 2 or 4 weeks after transplantation to evaluate the number and morphological appearance of follicles. Results: Early start of FSH treatment within 1 week following transplantation partly prevents primordial follicle loss in fresh and frozen-thawed tissues, whereas after a 3 weeks time interval this effect is present only in fresh tissues. A similar positive effect of early, but not later FSH treatment on primary follicles is seen in fresh tissues compared to only marginal effects in frozen-thawed tissues. The percentage of morphologically normal follicles is generally increased in FSH treated tissues, whereas the percentage of primary follicles over all primordial and primary follicles is increased by FSH only in freshly-grafted tissues. Conclusions: FSH treatment alleviates depletion of the resting follicle pool and promotes normal follicular morphology both in freshly and frozen-thawed grafted tissues. In previously cryopreserved tissues, applying to most of the tissues intended for clinical use in fertility preservation attempts, its positive effect on primordial follicle numbers and potential graft sustainment is dependent on an early start of treatment within one week of transplantation

    The aging male: investigation, treatment and monitoring of late-onset hypogonadism in males

    Get PDF
    Androgen deficiency in the aging male has become a topic of increasing interest and debate throughout the world. The demographics clearly demonstrate the increasing percentage of the population that is in the older age groups. The data also support the concept that testosterone falls progressively with age and that a significant percentage of men over the age of 60 years have serum testosterone levels that are below the lower limits of young adults (age 20-30 years) men. The principal questions raised by these observations are whether older hypogonadal men will benefit from testosterone treatment and what will be the risks associated with such intervention. The past decade has brought evidence of benefit of androgen treatment on multiple target organs of hypogonadal men and recent studies show short-term beneficial effects of testosterone in older men that are similar to those in younger men. Long-term data on the effects of testosterone treatment in the older population are limited and specific risk data on the prostate and cardiovascular systems are needed. Answers to key questions of functional benefits that may retard frailty of the elderly are not yet available. The recommendations described below were prepared for the International Society of Andrology (ISA) and the International Society for the Study of the Aging Male (ISSAM) following a panel discussion with active participation from the audience sponsored by the ISA on the topic at the 4th ISSAM Congress in Prague in February 2004.peer-reviewe

    Regulation of androgen receptor mRNA and protein in the rat testis by testosterone

    Get PDF
    __Abstract__ Adult rats were treated with ethane dimethane sulphonate (EDS), an agent that destroys Leydig cells. Within 5 days after EDS treatment, the levels of testosterone (T) in the circulation and in the testis were decreased to very low values, which makes it possible to manipulate the testicular T concentration through administration of exogenous T. Spermatogenesis was not markedly affected within 5 days after EDS treatment, also not in the absence of T administration. In testes of EDS-treated rats, the androgen receptor mRNA (ARmRNA) level remained unaltered for 5 days. In ventral prostate, however, this treatment caused a pronounced upregulation of the level of ARmRNA, which could be counteracted by implantation of silastic T implants immediately after EDS treatment. In EDS-treated rats carrying a T implant and in untreated rats, the same number of specific [3H]R1881 binding sites was observed using a total testis nuclear fraction (Scatchard analysis). In testes from EDS-treated rats without T implants, androgen receptors (AR) did not fractionate into the nuclear fraction; however, the total testicular AR content in these animals (measured by nuclear [3H]R1881 binding after receptor transformation through injection of a high dose of T, 2 h before killing the rats) remained unaltered. Immunoprecipitation and Western blotting using anti N-terminal antibodies seemed to indicate that the total testicular amount of AR protein in the EDS-treated rats was very low as compared to that in EDS-treated rats carrying T implants and in untreated rats. Even after receptor retransformation (by injection of a high dose of T) the receptors were not quantitatively detected by immunoprecipitation and Western blotting. This may point to a structural modification of the AR that occurs in the prolonged absence of androgens

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Testosterone deficiency: a historical perspective

    No full text
    The biological effects of the testes and testosterone are known since antiquity. Aristotle knew the effects of castration and his hypothesis on fertilization is one of the first scientific encounters in reproductive biology. Over centuries, castration has been performed as punishment and to produce obedient slaves, but also to preserve the soprano voices of prepubertal boys. The Chinese imperial (and other oriental) courts employed castrates as overseers in harems who often obtained high-ranking political positions. The era of testis transplantation and organotherapy was initiated by John Hunter in London who transplanted testes into capons in 1786. The intention of his experiments was to prove the 'vital principle' as the basis for modern transplantation medicine, but Hunter did not consider endocrine aspects. Arnold Adolph Berthold postulated internal secretion from his testicular transplantation experiments in 1849 in Göttingen and is thus considered the father of endocrinology. Following his observations, testicular preparations were used for therapy, popularized by self-experiments by Charles-Edouard Brown-Séquard in Paris (1889), which can at best have placebo effects. In the 1920s Sergio Voronoff transplanted testes from animals to men, but their effectiveness was disproved. Today testicular transplantation is being refined by stem cell research and germ cell transplantation. Modern androgen therapy started in 1935 when Enrest Lacquer isolated testosterone from bull testes in Amsterdam. In the same year testosterone was chemically synthesized independently by Adolf Butenandt in Göttingen and Leopold Ruzicka in Basel. Since testosterone was ineffective orally it was either compressed into subcutaneous pellets or was used orally as 17α-methyl testosterone, now obsolete because of liver toxicity. The early phases of testosterone treatment coincide with the first description of the most prominent syndromes of hypogonadism by Klinefelter, by Kallmann, DelCastillo and Pasqualini. In the 1950s longer-acting injectable testosterone enanthate became the preferred therapeutic modality. In the 1950s and 1960s, research concentrated on the chemical modification of androgens in order to emphasize their anabolic effects. Although anabolic steroids have largely disappeared from clinical medicine, they continue to live an illegal life for doping in athletics. In the 1970s the orally effective testosterone undecanoate was added to the spectrum of preparations. Recent transdermal gels and long-acting injectable preparations provide options for physiological testosterone substitution therapy
    corecore