5 research outputs found

    Organ-on-chip models of cancer metastasis for future personalized medicine: from chip to the patient

    No full text
    Most cancer patients do not die from the primary tumor but from its metastasis. Current in vitro and in vivo cancer models are incapable of satisfactorily predicting the outcome of various clinical treatments on patients. This is seen as a serious limitation and efforts are underway to develop a new generation of highly predictive cancer models with advanced capabilities. In this regard, organ-on-chip models of cancer metastasis emerge as powerful predictors of disease progression. They offer physiological-like conditions where the (hypothesized) mechanistic determinants of the disease can be assessed with ease. Combined with high-throughput characteristics, the employment of organ-on-chip technology would allow pharmaceutical companies and clinicians to test new therapeutic compounds and therapies. This will permit the screening of a large battery of new drugs in a fast and economic manner, to accelerate the diagnosis of the disease in the near future, and to test personalized treatments using cells from patients. In this review, we describe the latest advances in the field of organ-on-chip models of cancer metastasis and their integration with advanced imaging, screening and biosensing technologies for future precision medicine applications. We focus on their clinical applicability and market opportunities to drive us forward to the next generation of tumor models for improved cancer patient theranostics.- The authors acknowledge the financial support from the European Union Framework Programme for Research and Innovation Horizon 2020 on Forefront Research in 3D Disease Cancer Models as in vitro Screening Technologies (FoReCaST) under grant agreement no 668983. Conflicts of interest: none.info:eu-repo/semantics/publishedVersio

    Metallogenesis

    No full text

    The T-Odd Bacteriophages

    No full text
    corecore