7 research outputs found

    A motif-based approach to network epidemics

    Get PDF
    Networks have become an indispensable tool in modelling infectious diseases, with the structure of epidemiologically relevant contacts known to affect both the dynamics of the infection process and the efficacy of intervention strategies. One of the key reasons for this is the presence of clustering in contact networks, which is typically analysed in terms of prevalence of triangles in the network. We present a more general approach, based on the prevalence of different four-motifs, in the context of ODE approximations to network dynamics. This is shown to outperform existing models for a range of small world networks

    Modeling infectious disease dynamics in the complex landscape of global health.

    Get PDF
    Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health

    Mapping Out Emerging Network Structures in Dynamic Network Models Coupled with Epidemics

    Get PDF
    We consider the susceptible – infected – susceptible (SIS) epidemic on a dynamic network model with addition and deletion of links depending on node status. We analyse the resulting pairwise model using classical bifurcation theory to map out the spectrum of all possible epidemic behaviours. However, the major focus of the chapter is on the evolution and possible equilibria of the resulting networks. Whereas most studies are driven by determining system-level outcomes, e.g., whether the epidemic dies out or becomes endemic, with little regard for the emerging network structure, here, we want to buck this trend by augmenting the system-level results with mapping out of the structure and properties of the resulting networks. We find that depending on parameter values the network can become disconnected and show bistable-like behaviour whereas the endemic steady state sees the emergence of networks with qualitatively different degree distributions. In particular, we observe de-phased oscillations of both prevalence and network degree during which there is role reversal between the level and nature of the connectivity of susceptible and infected nodes. We conclude with an attempt at describing what a potential bifurcation theory for networks would look like
    corecore