3 research outputs found

    Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe

    Get PDF
    Background: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. Methods: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. Findings: Across the 854 urban areas in Europe, we estimated an annual excess of 203620 (empirical 95% CI 180882-224 613) deaths attributed to cold and 20 173 (17 261-22934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. Interpretation: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. Funding: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center

    A systematic review on the association between total and cardiopulmonary mortality/morbidity or cardiovascular risk factors with long-term exposure to increased or decreased ambient temperature.

    Get PDF
    The health effects of acute exposure to temperature extremes are established; those of long-term exposure only recently received attention. We performed a systematic review to assess the associations of long-term (>3 months) exposure to higher or lower temperature on total and cardiopulmonary mortality and morbidity, screening 3455 studies and selecting 34. The studies were classified in those observing associations within a population over years with changing annual temperature indices and those comparing areas with a different climate. We also assessed the risk of bias, adapting appropriately an instrument developed by the World Health Organization for air pollution. Studies reported that annual temperature indices for extremes and variability were associated with annual increases in mortality, indicating that effects of temperature extremes cannot be attributed only to short-term mortality displacement. Studies on cardiovascular mortality indicated stronger associations with cold rather than hot temperature, whilst those on respiratory outcomes reported effects of both heat and cold but were few and used diverse health outcomes. Interactions with air pollution were not generally assessed. The few studies investigating effect modification showed stronger effects among the elderly and those socially deprived. Comparisons of health outcome prevalence between areas reported lower blood pressure and a tendency for higher obesity in populations living in warmer climates. Our review indicated interesting associations between long-term exposure to unusual temperature levels in specific areas and differences in health outcomes and cardiovascular risk factors between geographical locations with different climate, but the number of studies by design and health outcome was small. Risk of bias was identified because of the use of crude exposure assessment and inadequate adjustment for confounding. More and better designed studies, including the investigation of effect modifiers, are needed

    Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe.

    Get PDF
    BACKGROUND: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center
    corecore