3,726 research outputs found
Two-dimensional array of magnetic particles: The role of an interaction cutoff
Based on theoretical results and simulations, in two-dimensional arrangements
of a dense dipolar particle system, there are two relevant local dipole
arrangements: (1) a ferromagnetic state with dipoles organized in a triangular
lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square
lattice. In order to accelerate simulation algorithms we search for the
possibility of cutting off the interaction potential. Simulations on a dipolar
two-line system lead to the observation that the ferromagnetic state is much
more sensitive to the interaction cutoff than the corresponding
anti-ferromagnetic state. For (measured in particle diameters)
there is no substantial change in the energetical balance of the ferromagnetic
and anti-ferromagnetic state and the ferromagnetic state slightly dominates
over the anti-ferromagnetic state, while the situation is changed rapidly for
lower interaction cutoff values, leading to the disappearance of the
ferromagnetic ground state. We studied the effect of bending ferromagnetic and
anti-ferromagnetic two-line systems and we observed that the cutoff has a major
impact on the energetical balance of the ferromagnetic and anti-ferromagnetic
state for . Based on our results we argue that is a
reasonable choice for dipole-dipole interaction cutoff in two-dimensional
dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page
Computer simulations of two-dimensional melting with dipole-dipole interactions
We perform molecular dynamics and Monte Carlo simulations of two-dimensional
melting with dipole-dipole interactions. Both static and dynamic behaviors are
examined. In the isotropic liquid phase, the bond orientational correlation
length 6 and susceptibility 6 are measured, and the data are fitted to the
theoretical ansatz. An algebraic decay is detected for both spatial and
temporal bond orientational correlation functions in an intermediate
temperature regime, and it provides an explicit evidence for the existence of
the hexatic phase. From the finite-size scaling analysis of the global bond
orientational order parameter, the disclination unbinding temperature Ti is
estimated. In addition, from dynamic Monte Carlo simulations of the positional
order parameter, we extract the critical exponents at the dislocation unbinding
temperature Tm. All the results are in agreement with those from experiments
and support the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory.Comment: 23 pages, 12figure
Two-Dimensional Wigner Crystal in Anisotropic Semiconductor
We investigate the effect of mass anisotropy on the Wigner crystallization
transition in a two-dimensional (2D) electron gas. The static and dynamical
properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais
lattices in the presence of anisotropic mass, as may be obtainable in Si
MOSFETs with (110) surface. By studying the stability of all possible lattices,
we find significant change in the crystal structure and melting density of the
electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure
Statistical-mechanical theory of the overall magnetic properties of mesocrystals
The mesocrystal showing both electrorheological and magnetorheological
effects is called electro-magnetorheological (EMR) solids. Prediction of the
overall magnetic properties of the EMR solids is a challenging task due to the
coexistence of the uniaxially anisotropic behavior and structural transition as
well as long-range interaction between the suspended particles. To consider the
uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich
equation for calculating the effective permeabilities by adopting an explicit
characteristic spheroid rather than a characteristic sphere used in the
derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an
Ewald-Kornfeld formulation we are able to investigate the effective
permeability by including the structural transition and long-range interaction
explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation
and Onsager equation naturally. To this end, the numerical simulation shows the
validity of monitoring the structure of EMR solids by detecting their effective
permeabilities.Comment: 14 pages, 1 figur
Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo
NMDA receptors (NMDARs) are important for neuronal development and circuit formation. The NMDAR subunits NR2A and NR2B are biophysically distinct and differentially expressed during development but their individual contribution to structural plasticity is unknown. Here we test whether NR2A and NR2B subunits have specific functions in the morphological development of tectal neurons in living Xenopus tadpoles. We use exogenous subunit expression and endogenous subunit knockdown to shift synaptic NMDAR composition toward NR2A or NR2B, as shown electrophysiologically. We analyzed the dendritic arbor structure and found evidence for both overlapping and distinct functions of NR2A and NR2B in dendritic development. Control neurons develop regions of high local branch density in their dendritic arbor, which may be important for processing topographically organized inputs. Exogenous expression of either NR2A or NR2B decreases local branch clusters, indicating a requirement for both subunits in dendritic arbor development. Knockdown of endogenous NR2A reduces local branch clusters, whereas knockdown of NR2B has no effect on branch clustering. Analysis of the underlying branch dynamics shows that exogenous NR2B-expressing neurons are more dynamic than control or exogenous NR2A-expressing neurons, demonstrating subunit-specific regulation of branch dynamics. Visual experience-dependent increases in dendritic arbor growth rate seen in control neurons are blocked in both exogenous NR2A- and NR2B-expressing neurons. These experiments indicate that NR2A and NR2B have subunit-specific properties in dendritic arbor development, but also overlapping functions, indicating a requirement for both subunits in neuronal development
Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires
It is found that all the zigzag chains except the nonmagnetic (NM) Ni and
antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look
like a corner-sharing triangle ribbon, and have a lower total energy than the
corresponding linear chains. All the 3d transition metals in both linear and
zigzag structures have a stable or metastable ferromagnetic (FM) state. The
electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and
Ni linear chains is close to 90% or above. In the zigzag structure, the AF
state is more stable than the FM state only in the Cr chain. It is found that
the shape anisotropy energy may be comparable to the electronic one and always
prefers the axial magnetization in both the linear and zigzag structures. In
the zigzag chains, there is also a pronounced shape anisotropy in the plane
perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in
the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is
a spin-reorientation transition in the FM Fe and Co linear chains when the
chains are compressed or elongated. Large orbital magnetic moment is found in
the FM Fe, Co and Ni linear chains
Laughlin-Jastrow-correlated Wigner crystal in a strong magnetic field
We propose a new ground state trial wavefunction for a two-dimensional Wigner
crystal in a strong perpendicular magnetic field. The wavefunction includes
Laughlin-Jastrow correlations between electron pairs, and may be interpreted as
a crystal state of composite fermions or composite bosons. Treating the power
of the Laughlin-Jastrow factor as a variational parameter, we use quantum
Monte Carlo simulations to compute the energy of these new states. We find that
our wavefunctions have lower energy than existing crystalline wavefunctions in
the lowest Landau level. Our results are consistent with experimental
observations of the filling factor at which the transition between the
fractional quantum Hall liquid and the Wigner crystal occurs for electron
systems. Exchange contributions to the wavefunctions are estimated
quantitatively and shown to be negligible for sufficiently small filling
factors
Epidemic space
The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)
The photoheating of the intergalactic medium in synthesis models of the UV background
We compare cosmological hydrodynamical simulations combined with the homogeneous metagalactic UV background (UVB) of Haardt & Madau (hereafter HM2012) to observations of the Lyman α forest that are sensitive to the thermal and ionization state of the intergalactic medium (IGM). The transition from optically thick to thin photoheating predicted by the simple one-zone, radiative transfer model implemented by HM2012 predicts a thermal history that is in remarkably good agreement with the observed rise of the IGM temperature at z∼3 if we account for the expected evolution of the volume filling factor of He iii. Our simulations indicate that there may be, however, some tension between the observed peak in the temperature evolution and the rather slow evolution of the He ii opacities suggested by recent Hubble Space Telescope/Cosmic Origins Spectrograph measurements. The HM2012 UVB also underpredicts the metagalactic hydrogen photoionization rate required by our simulations to match the observed opacity of the forest at z>4 and z<
- …
