3,726 research outputs found

    Two-dimensional array of magnetic particles: The role of an interaction cutoff

    Full text link
    Based on theoretical results and simulations, in two-dimensional arrangements of a dense dipolar particle system, there are two relevant local dipole arrangements: (1) a ferromagnetic state with dipoles organized in a triangular lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square lattice. In order to accelerate simulation algorithms we search for the possibility of cutting off the interaction potential. Simulations on a dipolar two-line system lead to the observation that the ferromagnetic state is much more sensitive to the interaction cutoff RR than the corresponding anti-ferromagnetic state. For R8R \gtrsim 8 (measured in particle diameters) there is no substantial change in the energetical balance of the ferromagnetic and anti-ferromagnetic state and the ferromagnetic state slightly dominates over the anti-ferromagnetic state, while the situation is changed rapidly for lower interaction cutoff values, leading to the disappearance of the ferromagnetic ground state. We studied the effect of bending ferromagnetic and anti-ferromagnetic two-line systems and we observed that the cutoff has a major impact on the energetical balance of the ferromagnetic and anti-ferromagnetic state for R4R \lesssim 4. Based on our results we argue that R5R \approx 5 is a reasonable choice for dipole-dipole interaction cutoff in two-dimensional dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page

    Computer simulations of two-dimensional melting with dipole-dipole interactions

    Full text link
    We perform molecular dynamics and Monte Carlo simulations of two-dimensional melting with dipole-dipole interactions. Both static and dynamic behaviors are examined. In the isotropic liquid phase, the bond orientational correlation length 6 and susceptibility 6 are measured, and the data are fitted to the theoretical ansatz. An algebraic decay is detected for both spatial and temporal bond orientational correlation functions in an intermediate temperature regime, and it provides an explicit evidence for the existence of the hexatic phase. From the finite-size scaling analysis of the global bond orientational order parameter, the disclination unbinding temperature Ti is estimated. In addition, from dynamic Monte Carlo simulations of the positional order parameter, we extract the critical exponents at the dislocation unbinding temperature Tm. All the results are in agreement with those from experiments and support the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory.Comment: 23 pages, 12figure

    Two-Dimensional Wigner Crystal in Anisotropic Semiconductor

    Full text link
    We investigate the effect of mass anisotropy on the Wigner crystallization transition in a two-dimensional (2D) electron gas. The static and dynamical properties of a 2D Wigner crystal have been calculated for arbitrary 2D Bravais lattices in the presence of anisotropic mass, as may be obtainable in Si MOSFETs with (110) surface. By studying the stability of all possible lattices, we find significant change in the crystal structure and melting density of the electron lattice with the lowest ground state energy.Comment: 4 pages, revtex, 4 figure

    Statistical-mechanical theory of the overall magnetic properties of mesocrystals

    Full text link
    The mesocrystal showing both electrorheological and magnetorheological effects is called electro-magnetorheological (EMR) solids. Prediction of the overall magnetic properties of the EMR solids is a challenging task due to the coexistence of the uniaxially anisotropic behavior and structural transition as well as long-range interaction between the suspended particles. To consider the uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich equation for calculating the effective permeabilities by adopting an explicit characteristic spheroid rather than a characteristic sphere used in the derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an Ewald-Kornfeld formulation we are able to investigate the effective permeability by including the structural transition and long-range interaction explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation and Onsager equation naturally. To this end, the numerical simulation shows the validity of monitoring the structure of EMR solids by detecting their effective permeabilities.Comment: 14 pages, 1 figur

    Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo

    Get PDF
    NMDA receptors (NMDARs) are important for neuronal development and circuit formation. The NMDAR subunits NR2A and NR2B are biophysically distinct and differentially expressed during development but their individual contribution to structural plasticity is unknown. Here we test whether NR2A and NR2B subunits have specific functions in the morphological development of tectal neurons in living Xenopus tadpoles. We use exogenous subunit expression and endogenous subunit knockdown to shift synaptic NMDAR composition toward NR2A or NR2B, as shown electrophysiologically. We analyzed the dendritic arbor structure and found evidence for both overlapping and distinct functions of NR2A and NR2B in dendritic development. Control neurons develop regions of high local branch density in their dendritic arbor, which may be important for processing topographically organized inputs. Exogenous expression of either NR2A or NR2B decreases local branch clusters, indicating a requirement for both subunits in dendritic arbor development. Knockdown of endogenous NR2A reduces local branch clusters, whereas knockdown of NR2B has no effect on branch clustering. Analysis of the underlying branch dynamics shows that exogenous NR2B-expressing neurons are more dynamic than control or exogenous NR2A-expressing neurons, demonstrating subunit-specific regulation of branch dynamics. Visual experience-dependent increases in dendritic arbor growth rate seen in control neurons are blocked in both exogenous NR2A- and NR2B-expressing neurons. These experiments indicate that NR2A and NR2B have subunit-specific properties in dendritic arbor development, but also overlapping functions, indicating a requirement for both subunits in neuronal development

    Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires

    Full text link
    It is found that all the zigzag chains except the nonmagnetic (NM) Ni and antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon, and have a lower total energy than the corresponding linear chains. All the 3d transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. The electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and Ni linear chains is close to 90% or above. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co and Ni linear chains

    Laughlin-Jastrow-correlated Wigner crystal in a strong magnetic field

    Full text link
    We propose a new ground state trial wavefunction for a two-dimensional Wigner crystal in a strong perpendicular magnetic field. The wavefunction includes Laughlin-Jastrow correlations between electron pairs, and may be interpreted as a crystal state of composite fermions or composite bosons. Treating the power mm of the Laughlin-Jastrow factor as a variational parameter, we use quantum Monte Carlo simulations to compute the energy of these new states. We find that our wavefunctions have lower energy than existing crystalline wavefunctions in the lowest Landau level. Our results are consistent with experimental observations of the filling factor at which the transition between the fractional quantum Hall liquid and the Wigner crystal occurs for electron systems. Exchange contributions to the wavefunctions are estimated quantitatively and shown to be negligible for sufficiently small filling factors

    Epidemic space

    Get PDF
    The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)

    The photoheating of the intergalactic medium in synthesis models of the UV background

    Get PDF
    We compare cosmological hydrodynamical simulations combined with the homogeneous metagalactic UV background (UVB) of Haardt & Madau (hereafter HM2012) to observations of the Lyman α forest that are sensitive to the thermal and ionization state of the intergalactic medium (IGM). The transition from optically thick to thin photoheating predicted by the simple one-zone, radiative transfer model implemented by HM2012 predicts a thermal history that is in remarkably good agreement with the observed rise of the IGM temperature at z∼3 if we account for the expected evolution of the volume filling factor of He iii. Our simulations indicate that there may be, however, some tension between the observed peak in the temperature evolution and the rather slow evolution of the He ii opacities suggested by recent Hubble Space Telescope/Cosmic Origins Spectrograph measurements. The HM2012 UVB also underpredicts the metagalactic hydrogen photoionization rate required by our simulations to match the observed opacity of the forest at z>4 and z<
    corecore