44 research outputs found

    Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome after renal transplantation in the United States

    Get PDF
    BACKGROUND: The incidence and risk factors for diabetic ketoacidosis (diabetic ketoacidosis) and hyperglycemic hyperosmolar syndrome (hyperglycemic hyperosmolar syndrome, previously called non-ketotic hyperosmolar coma) have not been reported in a national population of renal transplant (renal transplantation) recipients. METHODS: We performed a historical cohort study of 39,628 renal transplantation recipients in the United States Renal Data System between 1 July 1994 and 30 June 1998, followed until 31 Dec 1999. Outcomes were hospitalizations for a primary diagnosis of diabetic ketoacidosis (ICD-9 code 250.1x) and hyperglycemic hyperosmolar syndrome (code 250.2x). Cox Regression analysis was used to calculate adjusted hazard ratios for time to hospitalization for diabetic ketoacidosis or hyperglycemic hyperosmolar syndrome. RESULTS: The incidence of diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome were 33.2/1000 person years (PY) and 2.7/1000 PY respectively for recipients with a prior diagnosis of diabetes mellitus (DM), and 2.0/1000 PY and 1.1/1000 PY in patients without DM. In Cox Regression analysis, African Americans (AHR, 2.71, 95 %CI, 1.96–3.75), females, recipients of cadaver kidneys, patients age 33–44 (vs. >55), more recent year of transplant, and patients with maintenance TAC (tacrolimus, vs. cyclosporine) had significantly higher risk of diabetic ketoacidosis. However, the rate of diabetic ketoacidosis decreased more over time in TAC users than overall. Risk factors for hyperglycemic hyperosmolar syndrome were similar except for the significance of positive recipient hepatitis C serology and non-significance of female gender. Both diabetic ketoacidosis (AHR, 2.44, 95% CI, 2.10–2.85, p < 0.0001) and hyperglycemic hyperosmolar syndrome (AHR 1.87, 95% CI, 1.22–2.88, p = 0.004) were independently associated with increased mortality. CONCLUSIONS: We conclude that diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome were associated with increased risk of mortality and were not uncommon after renal transplantation. High-risk groups were identified

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder

    Get PDF
    <p>Abstract</p> <p>Background and objective</p> <p>This study examined whether zinc intake was associated with lower risk of smoking-induced obstructive lung disorder through interplay with cadmium, one of major toxicants in cigarette smoke.</p> <p>Methods</p> <p>Data were obtained from a sample of 6,726 subjects aged 40+ from the Third National Health and Nutrition Examination Survey. The forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were measured using spirometry. Gender-, ethnicity-, and age-specific equations were used to calculate the lower limit of normal (LLN) to define obstructive lung disorder as: observed FEV1/FVC ratio and FEV1 below respective LLN. Zinc intake was assessed by questionnaire. Logistic regression analysis was applied to investigate the associations of interest.</p> <p>Results</p> <p>The analyses showed that an increased prevalence of obstructive lung disorder was observed among individuals with low zinc intake regardless of smoking status. The adjusted odds of lung disorder are approximately 1.9 times greater for subjects in the lowest zinc-intake tertile than those in the highest tertile (odds ratio = 1.89, 95% confidence interval = 1.22-2.93). The effect of smoking on lung function decreased considerably after adjusting for urinary cadmium. Protective association between the zinc-to-cadmium ratio (log-transformed) and respiratory risk suggests that zinc may play a role in smoking-associated lung disorder by modifying the influence of cadmium.</p> <p>Conclusions</p> <p>While zinc intake is associated with lower risk of obstructive lung disorder, the role of smoking cession and/or prevention are likely to be more important given their far greater effect on respiratory risk. Future research is warranted to explore the mechanisms by which zinc could modify smoking-associated lung disease.</p

    ATP Release from Vascular Endothelia Occurs Across Cx43 Hemichannels and Is Attenuated during Hypoxia

    Get PDF
    Background: Extracellular ATP is an important signaling molecule for vascular adaptation to limited oxygen availability (hypoxia). Here, we pursued the contribution of vascular endothelia to extracellular ATP release under hypoxic conditions. Methodology, Principal Findings: We gained first insight from studying ATP release from endothelia (HMEC-1) pre-exposed to hypoxia. Surprisingly, we found that ATP release was significantly attenuated following hypoxia exposure (2 % oxygen, 2263 % after 48 h). In contrast, intracellular ATP was unchanged. Similarly, lactate-dehydrogenase release into the supernatants was similar between normoxic or hypoxic endothelia, suggesting that differences in lytic ATP release between normoxia or hypoxia are minimal. Next, we used pharmacological strategies to study potential mechanisms for endothelialdependent ATP release (eg, verapamil, dipyridamole, 18-alpha-glycyrrhetinic acid, anandamide, connexin-mimetic peptides). These studies revealed that endothelial ATP release occurs – at least in part- through connexin 43 (Cx43) hemichannels. A real-time RT-PCR screen of endothelial connexin expression showed selective repression of Cx43 transcript and additional studies confirmed time-dependent Cx43 mRNA, total and surface protein repression during hypoxia. In addition, hypoxia resulted in Cx43-serine368 phosphorylation, which is known to switch Cx43 hemi-channels from an open to a closed state. Conclusions/Significance: Taken together, these studies implicate endothelial Cx43 in hypoxia-associated repression o

    Inhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus

    Get PDF
    Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M1 mAChR on CA1 pyramidal cells inhibit both small conductance Ca2+-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca2+calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M1 mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels

    Trehalose-6-phosphate-mediated toxicity determines essentiality of OtsB2 in Mycobacterium tuberculosis in vitro and in mice

    Get PDF
    Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors

    A review of gene-drug interactions for nonsteroidal anti-inflammatory drug use in preventing colorectal neoplasia.

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to be effective chemopreventive agents for colorectal neoplasia. Polymorphisms in NSAID targets or metabolizing enzymes may affect NSAID efficacy or toxicity. We conducted a literature review to summarize current evidence of gene-drug interactions between NSAID use and polymorphisms in COX1, COX2, ODC, UGT1A6 and CYP2C9 on risk of colorectal neoplasia by searching OVID and PubMed. Of 134 relevant search results, thirteen investigated an interaction. One study reported a significant interaction between NSAID use and the COX1 Pro17Leu polymorphism (P=0.03) whereby the risk reduction associated with NSAID use among homozygous wild-type genotypes was not observed among NSAID users with variant alleles. Recent pharmacodynamic data support the potential for gene-drug interactions for COX1 Pro17Leu. Statistically significant interactions have also been reported for ODC (315G>A), UGT1A6 (Thr181Ala+Arg184Ser or Arg184Ser alone), and CYP2C9 (*2/*3). No statistically significant interactions have been reported for polymorphisms in COX2; however, an interaction with COX2 -765G>C approached significance (P=0.07) in one study. Among seven remaining studies, reported interactions were not statistically significant for COX1, COX2 and ODC gene polymorphisms. Most studies were of limited sample size. Definitions of NSAID use differed substantially between studies. The literature on NSAID-gene interactions to date is limited. Reliable detection of gene-NSAID interactions will require greater sample sizes, consistent definitions of NSAID use and evaluation of clinical trial subjects of chemoprevention studies

    Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold

    Get PDF

    Facebook and MySpace: Complement or Substitute for Face-to-Face Interaction?

    No full text

    Emergency management of hand injuries

    No full text
    corecore