2,000 research outputs found

    The Meissl scheme for the geodetic ellipsoid

    Get PDF
    We present a variant of the Meissl scheme to relate surface spherical harmonic coefficients of the disturbing potential of the Earth's gravity field on the surface of the geodetic ellipsoid to surface spherical harmonic coefficients of its first- and second-order normal derivatives on the same or any other ellipsoid. It extends the original (spherical) Meissl scheme, which only holds for harmonic coefficients computed from geodetic data on a sphere. In our scheme, a vector of solid spherical harmonic coefficients of one quantity is transformed into spherical harmonic coefficients of another quantity by pre-multiplication with a transformation matrix. This matrix is diagonal for transformations between spheres, but block-diagonal for transformations involving the ellipsoid. The computation of the transformation matrix involves an inversion if the original coefficients are defined on the ellipsoid. This inversion can be performed accurately and efficiently (i.e., without regularisation) for transformation among different gravity field quantities on the same ellipsoid, due to diagonal dominance of the matrices. However, transformations from the ellipsoid to another surface can only be performed accurately and efficiently for coefficients up to degree and order 520 due to numerical instabilities in the inversion

    Coordination of Cell Polarity during Xenopus Gastrulation

    Get PDF
    Cell polarity is an essential feature of animal cells contributing to morphogenesis. During Xenopus gastrulation, it is known that chordamesoderm cells are polarized and intercalate each other allowing anterior-posterior elongation of the embryo proper by convergent extension (CE). Although it is well known that the cellular protrusions at both ends of polarized cells exert tractive force for intercalation and that PCP pathway is known to be essential for the cell polarity, little is known about what triggers the cell polarization and what the polarization causes to control intracellular events enabling the intercalation that leads to the CE. In our research, we used EB3 (end-binding 3), a member of +TIPs that bind to the plus end of microtubule (MT), to visualize the intracellular polarity of chordamesoderm cells during CE to investigate the trigger of the establishment of cell polarity. We found that EB3 movement is polarized in chordamesoderm cells and that the notochord-somite tissue boundary plays an essential role in generating the cell polarity. This polarity was generated before the change of cell morphology and the polarized movement of EB3 in chordamesoderm cells was also observed near the boundary between the chordamesoderm tissue and naïve ectoderm tissue or lateral mesoderm tissues induced by a low concentration of nodal mRNA. These suggest that definitive tissue separation established by the distinct levels of nodal signaling is essential for the chordamesodermal cells to acquire mediolateral cell polarity

    MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)

    Get PDF
    Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function

    Population Physiology: Leveraging Electronic Health Record Data to Understand Human Endocrine Dynamics

    Get PDF
    Studying physiology and pathophysiology over a broad population for long periods of time is difficult primarily because collecting human physiologic data can be intrusive, dangerous, and expensive. One solution is to use data that have been collected for a different purpose. Electronic health record (EHR) data promise to support the development and testing of mechanistic physiologic models on diverse populations and allow correlation with clinical outcomes, but limitations in the data have thus far thwarted such use. For example, using uncontrolled population-scale EHR data to verify the outcome of time dependent behavior of mechanistic, constructive models can be difficult because: (i) aggregation of the population can obscure or generate a signal, (ii) there is often no control population with a well understood health state, and (iii) diversity in how the population is measured can make the data difficult to fit into conventional analysis techniques. This paper shows that it is possible to use EHR data to test a physiological model for a population and over long time scales. Specifically, a methodology is developed and demonstrated for testing a mechanistic, time-dependent, physiological model of serum glucose dynamics with uncontrolled, population-scale, physiological patient data extracted from an EHR repository. It is shown that there is no observable daily variation the normalized mean glucose for any EHR subpopulations. In contrast, a derived value, daily variation in nonlinear correlation quantified by the time-delayed mutual information (TDMI), did reveal the intuitively expected diurnal variation in glucose levels amongst a random population of humans. Moreover, in a population of continuously (tube) fed patients, there was no observable TDMI-based diurnal signal. These TDMI-based signals, via a glucose insulin model, were then connected with human feeding patterns. In particular, a constructive physiological model was shown to correctly predict the difference between the general uncontrolled population and a subpopulation whose feeding was controlled

    The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments.</p> <p>Results</p> <p>In this manuscript, we present the <it>Drosophila melanogaster </it>PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal <url>http://www.drosophila-peptideatlas.org</url> allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s) in which it was observed.</p> <p>Conclusion</p> <p>PeptideAtlas is an open access database for the <it>Drosophila </it>community that has several features and applications that support (1) reduction of the complexity inherently associated with performing targeted proteomic studies, (2) designing and accelerating shotgun proteomics experiments, (3) confirming or questioning gene models, and (4) adjusting gene models such that they are in line with observed <it>Drosophila </it>peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.</p

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Derivation of Myoepithelial Progenitor Cells from Bipotent Mammary Stem/Progenitor Cells

    Get PDF
    There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Recent molecular profiling has identified six major subtypes of breast cancer: basal-like, ErbB2-overexpressing, normal breast epithelial-like, luminal A and B, and claudin-low subtypes. To help understand the relationship among mammary stem/progenitor cells and breast cancer subtypes, we have recently derived distinct hTERT-immortalized human mammary stem/progenitor cell lines: a K5+/K19− type, and a K5+/K19+ type. Under specific culture conditions, bipotent K5+/K19− stem/progenitor cells differentiated into stable clonal populations that were K5−/K19− and exhibit self-renewal and unipotent myoepithelial differentiation potential in contrast to the parental K5+/K19− cells which are bipotent. These K5−/K19− cells function as myoepithelial progenitor cells and constitutively express markers of an epithelial to mesenchymal transition (EMT) and show high invasive and migratory abilities. In addition, these cells express a microarray signature of claudin-low breast cancers. The EMT characteristics of an un-transformed unipotent mammary myoepithelial progenitor cells together with claudin-low signature suggests that the claudin-low breast cancer subtype may arise from myoepithelial lineage committed progenitors. Availability of immortal MPCs should allow a more definitive analysis of their potential to give rise to claudin-low breast cancer subtype and facilitate biological and molecular/biochemical studies of this disease

    Preoperative information for ICU patients to reduce anxiety during and after the ICU-stay: protocol of a randomized controlled trial [NCT00151554]

    Get PDF
    BACKGROUND: According to current evidence and psychological theorizing proper information giving seems to be a promising way to reduce patient anxiety. In the case of surgical patients, admission to the intensive care unit (ICU) is strongly associated with uncertainty, unpredictability and anxiety for the patient. Thus, ICU specific information could have a high clinical impact. This study investigates the potential benefits of a specifically designed ICU-related information program for patients who undergo elective cardiac, abdominal or thoracic surgery and are scheduled for ICU stay. METHODS/DESIGN: The trial is designed as a prospective randomized controlled trial including an intervention and a control group. The control group receives the standard preparation currently conducted by surgeons and anesthetists. The intervention group additionally receives a standardized information program with specific procedural, sensory and coping information about the ICU. A measurable clinical relevant difference regarding anxiety will be expected after discharge from ICU. Power calculation (α = 0.05; β = 0.20; Δ = 8.50 score points) resulted in a required sample size of N = 120 cardiac surgical patients (n = 60 vs. n = 60). Furthermore, N = 20 abdominal or thoracic surgical patients will be recruited (n = 10 vs. n = 10) to gain insight to a possible generalization to other patient groups. Additionally the moderating effect of specific patient attributes (need for cognition, high trait anxiety) will be investigated to identify certain patient groups which benefit most. DISCUSSION: The proposed study promises to strengthen evidence on effects of a specific, concise information program that addresses the information needs of patients scheduled for ICU stay

    Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning

    Get PDF
    Background: Osteoarthritis (OA) is an inflammatory disease of synovial joints involving the loss and degeneration of articular cartilage. The gold standard for evaluating cartilage loss in OA is the measurement of joint space width on standard radiographs. However, in most cases the diagnosis is made well after the onset of the disease, when the symptoms are well established. Identification of early biomarkers of OA can facilitate earlier diagnosis, improve disease monitoring and predict responses to therapeutic interventions. Methods: This study describes the bioinformatic analysis of data generated from high throughput proteomics for identification of potential biomarkers of OA. The mass spectrometry data was generated using a canine explant model of articular cartilage treated with the pro-inflammatory cytokine interleukin 1 β (IL-1β). The bioinformatics analysis involved the application of machine learning and network analysis to the proteomic mass spectrometry data. A rule based machine learning technique, BioHEL, was used to create a model that classified the samples into their relevant treatment groups by identifying those proteins that separated samples into their respective groups. The proteins identified were considered to be potential biomarkers. Protein networks were also generated; from these networks, proteins pivotal to the classification were identified. Results: BioHEL correctly classified eighteen out of twenty-three samples, giving a classification accuracy of 78.3% for the dataset. The dataset included the four classes of control, IL-1β, carprofen, and IL-1β and carprofen together. This exceeded the other machine learners that were used for a comparison, on the same dataset, with the exception of another rule-based method, JRip, which performed equally well. The proteins that were most frequently used in rules generated by BioHEL were found to include a number of relevant proteins including matrix metalloproteinase 3, interleukin 8 and matrix gla protein. Conclusions: Using this protocol, combining an in vitro model of OA with bioinformatics analysis, a number of relevant extracellular matrix proteins were identified, thereby supporting the application of these bioinformatics tools for analysis of proteomic data from in vitro models of cartilage degradation

    Serum microrna biomarkers for detection of non-small cell lung cancer

    Get PDF
    Non small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality world-wide and the majority of cases are diagnosed at late stages of disease. There is currently no cost-effective screening test for NSCLC, and the development of such a test is a public health imperative. Recent studies have suggested that chest computed tomography screening of patients at high risk of lung cancer can increase survival from disease, however, the cost effectiveness of such screening has not been established. In this Phase I/II biomarker study we examined the feasibility of using serum miRNA as biomarkers of NSCLC using RT-qPCR to examine the expression of 180 miRNAs in sera from 30 treatment naive NSCLC patients and 20 healthy controls. Receiver operating characteristic curves (ROC) and area under the curve were used to identify differentially expressed miRNA pairs that could distinguish NSCLC from healthy controls. Selected miRNA candidates were further validated in sera from an additional 55 NSCLC patients and 75 healthy controls. Examination of miRNA expression levels in serum from a multi-institutional cohort of 50 subjects (30 NSCLC patients and 20 healthy controls) identified differentially expressed miRNAs. A combination of two differentially expressed miRNAs miR-15b and miR-27b, was able to discriminate NSCLC from healthy controls with sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 100% in the training set. Upon further testing on additional 130 subjects (55 NSCLC and 75 healthy controls), this miRNA pair predicted NSCLC with a specificity of 84% (95% CI 0.73-0.91), sensitivity of 100% (95% CI; 0.93-1.0), NPV of 100%, and PPV of 82%. These data provide evidence that serum miRNAs have the potential to be sensitive, cost-effective biomarkers for the early detection of NSCLC. Further testing in a Phase III biomarker study in is necessary for validation of these results. © 2012 Hennessey et al
    corecore