5 research outputs found

    Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection

    Get PDF
    Acute myocardial infarction (AMI) and the heart failure (HF) that often complicates this condition, are among the leading causes of death and disability worldwide. To reduce myocardial infarct (MI) size and prevent heart failure, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). In this regard, targeting cardiac innervation may provide a novel therapeutic strategy for cardioprotection. A number of cardiac neural pathways mediate the beneficial effects of cardioprotective strategies such as ischaemic preconditioning and remote ischaemic conditioning, and nerve stimulation may therefore provide a novel therapeutic strategy for cardioprotection. In this article, we provide an overview of cardiac innervation and its impact on acute myocardial IRI, the role of extrinsic and intrinsic cardiac neural pathways in cardioprotection, and highlight peripheral and central nerve stimulation as a cardioprotective strategy with therapeutic potential for reducing MI size and preventing HF following AMI. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225

    The coronary circulation in acute myocardial ischaemia/reperfusion injury - a target for cardioprotection

    Get PDF
    The coronary circulation is both culprit and victim of acute myocardial infarction. The rupture of an epicardial atherosclerotic plaque with superimposed thrombosis causes coronary occlusion, and this occlusion must be removed to induce reperfusion. However, ischaemia and reperfusion cause damage not only in cardiomyocytes but also in the coronary circulation, including microembolisation of debris and release of soluble factors from the culprit lesion, impairment of endothelial integrity with subsequently increased permeability and oedema formation, platelet activation and leukocyte adherence, erythrocyte stasis, a shift from vasodilation to vasoconstriction, and ultimately structural damage to the capillaries with eventual no-reflow, microvascular obstruction and intramyocardial haemorrhage. Therefore, the coronary circulation is a valid target for cardioprotection, beyond protection of the cardiomyocyte. Virtually all of the above deleterious endpoints have been demonstrated to be favourably influenced by one or the other mechanical or pharmacological cardioprotective intervention. However, no-reflow is still a serious complication of reperfused myocardial infarction and carries, independently from infarct size, an unfavourable prognosis. Microvascular obstruction and intramyocardial haemorrhage can be diagnosed by modern imaging technologies, but still await an effective therapy. The current review provides an overview of strategies to protect the coronary circulation from acute myocardial ischaemia/reperfusion injury. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225

    Circulating blood cells and extracellular vesicles in acute cardioprotection

    Get PDF
    During an ST-elevation myocardial infarction (STEMI), the myocardium undergoes a prolonged period of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically cause further damage. Experimental procedures to limit ischaemia and reperfusion (IR) injury have tended to focus on the cardiomyocytes since they are crucial for cardiac function. However, there is increasing evidence that non-cardiomyocyte resident cells in the heart (as discussed in a separate review in this Spotlight series) as well as circulating cells and factors play important roles in this pathology. For example, erythrocytes, in addition to their main oxygen-ferrying role, can protect the heart from IR injury via the export of nitric oxide bioactivity. Platelets are well-known to be involved in haemostasis and thrombosis, but beyond these roles, they secrete numerous factors including sphingosine-1 phosphate (S1P), platelet activating factor (PAF) and cytokines that can all strongly influence the development of IR injury. This is particularly relevant given that most STEMI patients receive at least one type of platelet inhibitor. Moreover, there are large numbers of circulating vesicles in the blood, including microvesicles and exosomes, which can exert both beneficial and detrimental effects on IR injury. Some of these effects are mediated by the transfer of miRNA to the heart. Synthetic miRNA molecules may offer an alternative approach to limiting the response to IR injury. We discuss these and other circulating factors, focussing on potential therapeutic targets relevant to IR injury. Given the prevalence of co-morbidities such as diabetes in the target patient population, their influence will also be discussed. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225

    Targeting mitochondrial fusion and fission proteins for cardioprotection

    Get PDF
    New treatments are needed to protect the myocardium against the detrimental effects of acute ischaemia/reperfusion (IR) injury following an acute myocardial infarction (AMI), in order to limit myocardial infarct (MI) size, preserve cardiac function and prevent the onset of heart failure (HF). Given the critical role of mitochondria in energy production for cardiac contractile function, prevention of mitochondrial dysfunction during acute myocardial IRI may provide novel cardioprotective strategies. In this regard, the mitochondrial fusion and fissions proteins, which regulate changes in mitochondrial morphology, are known to impact on mitochondrial quality control by modulating mitochondrial biogenesis, mitophagy and the mitochondrial unfolded protein response. In this article, we review how targeting these inter-related processes may provide novel treatment targets and new therapeutic strategies for reducing MI size, preventing the onset of HF following AMI
    corecore