1,451 research outputs found
Mapping Theoretical and Methodological Perspectives for Understanding Speech Interface Interactions
CHI 2019: The ACM CHI Conference on Human Factors in Computing Systems - Weaving the Threads of CHI, Glasgow, United Kingdom, 4-9 May 2019The use of speech as an interaction modality has grown considerably through the integration of Intelligent Personal Assistants (IPAs- e.g. Siri, Google Assistant) into smartphones and voice based devices (e.g. Amazon Echo). However, there remain significant gaps in using theoretical frameworks to understand user behaviours and choices and how they may applied to specific speech interface interactions. This part-day multidisciplinary workshop aims to critically map out and evaluate the- oretical frameworks and methodological approaches across a number of disciplines and establish directions for new paradigms in understanding speech interface user behaviour. In doing so, we will bring together participants from HCI and other speech related domains to establish a cohesive, diverse and collaborative community of researchers from academia and industry with interest in exploring theoretical and methodological issues in the field.Irish Research Counci
MYC sensitises cells to apoptosis by driving energetic demand
The MYC oncogene is a potent driver of growth and proliferation but also sensitises cells to apoptosis, which limits its oncogenic potential. MYC induces several biosynthetic programmes and primary cells overexpressing MYC are highly sensitive to glutamine withdrawal suggesting that MYC-induced sensitisation to apoptosis may be due to imbalance of metabolic/energetic supply and demand. Here we show that MYC elevates global transcription and translation, even in the absence of glutamine, revealing metabolic demand without corresponding supply. Glutamine withdrawal from MRC-5 fibroblasts depletes key tricarboxylic acid (TCA) cycle metabolites and, in combination with MYC activation, leads to AMP accumulation and nucleotide catabolism indicative of energetic stress. Further analyses reveal that glutamine supports viability through TCA cycle energetics rather than asparagine biosynthesis and that TCA cycle inhibition confers tumour suppression on MYC-driven lymphoma in vivo. In summary, glutamine supports the viability of MYC-overexpressing cells through an energetic rather than a biosynthetic mechanism
Environmental associations of cownose ray (Rhinoptera bonasus) seasonal presence along the U.S. Atlantic Coast
Identifying the mechanistic drivers of migration can be crucial in shaping conservation and management policies. The cownose ray (Rhinoptera bonasus) is a relatively poorly understood elasmobranch species that occurs along the U.S. Atlantic coast and undergoes large-scale seasonal migrations. To better understand the drivers and timing of cownose ray seasonal migration in order to inform potential management measures, we analyzed telemetry detections of 51 mature cownose rays (38 female, 13 male) tagged with acoustic transmitters in the Maryland and Virginia portions of Chesapeake Bay. Detections within their summer habitat in Chesapeake Bay and winter habitat in the vicinity of Cape Canaveral, Florida, were matched with publicly available sea surface temperature (SST) data recorded by data buoys near the areas of tag detections and with local photoperiod and day of year. These variables were used in boosted regression tree models of ray presence (all rays combined, females only, and males only) in each seasonal habitat. Models were developed for presence during the entire summer and winter season, and for the time periods of arrival and departure from both summer and winter habitats. Seasonal presence in both summer and winter habitats was associated with distinct temperature, photoperiod, and date ranges, with temperature as the most influential variable in seasonal models. In models of arrival and departure periods, southward migration (departure from Chesapeake Bay and arrival off Cape Canaveral) was strongly associated with SST for all rays and arrival in the Chesapeake Bay region after northward migration was most strongly associated with day of year. The most influential variable during the period of northward departure from Cape Canaveral differed between males (day of year) and females (SST). This suggests that mature female northward migration may be driven by temperature while male northward migration may be driven by endogenous cues. These findings provide detailed information on the timing of cownose ray arrival at, presence in, and departure from seasonal habitats and provide potential justification for including the species in cross-taxa comparative studies on migratory behavior
Federated learning enables big data for rare cancer boundary detection
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing
Genetic structure of Eurasian badgers Meles meles (Carnivora: Mustelidae) and the colonization history of Ireland
The present study examined the contemporary genetic composition of the Eurasian badger, Meles meles, in Ireland, Britain and Western Europe, using six nuclear microsatellite loci and a 215-bp fragment of the mitochondrial DNA control region. Significant population structure was evident within Europe (global multilocus microsatellite FST = 0.205, P \u3c 0.001; global mitochondrial control region FST = 0.399, P \u3c 0.001). Microsatellite-based cluster analyses detected one population in Ireland, whereas badgers from Britain could be subdivided into several populations. Excluding the island populations of Ireland and Britain, badgers from Western Europe showed further structuring, with evidence of discrete Scandinavian, Central European, and Spanish populations. Mitochondrial DNA cluster analysis grouped the Irish population with Scandinavia and Spain, whereas the majority of British haplotypes grouped with those from Central Europe. The findings of the present study suggest that British and Irish badger populations colonized from different refugial areas, or that there were different waves of colonization from the source population. There are indications for the presence of an Atlantic fringe element, which has been seen in other Irish species. We discuss the results in light of the controversy about natural versus human-mediated introductions. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ,
The societal costs of femoral neck fracture patients treated with internal fixation
__Abstract__
The study rationale was to provide a detailed overview
of the costs for femoral neck fracture treatment with
internal fixation in the Netherlands. Mean total costs per
patient at 2-years follow-up were €19,425. Costs were higher
for older, less healthy patients. Results are comparable to
internationally published costs.
Introduction The aim of this study was to provide a detailed
overview of the cost and healthcare consumptio
Advancing Marine Biogeochemical and Ecosystem Reanalyses and Forecasts as Tools for Monitoring and Managing Ecosystem Health
Ocean ecosystems are subject to a multitude of stressors, including changes in ocean physics and biogeochemistry, and direct anthropogenic influences. Implementation of protective and adaptive measures for ocean ecosystems requires a combination of ocean observations with analysis and prediction tools. These can guide assessments of the current state of ocean ecosystems, elucidate ongoing trends and shifts, and anticipate impacts of climate change and management policies. Analysis and prediction tools are defined here as ocean circulation models that are coupled to biogeochemical or ecological models. The range of potential applications for these systems is broad, ranging from reanalyses for the assessment of past and current states, and short-term and seasonal forecasts, to scenario simulations including climate change projections. The objectives of this article are to illustrate current capabilities with regard to the three types of applications, and to discuss the challenges and opportunities. Representative examples of global and regional systems are described with particular emphasis on those in operational or pre-operational use. With regard to the benefits and challenges, similar considerations apply to biogeochemical and ecological prediction systems as do to physical systems. However, at present there are at least two major differences: (1) biogeochemical observation streams are much sparser than physical streams presenting a significant hinderance, and (2) biogeochemical and ecological models are largely unconstrained because of insufficient observations. Expansion of biogeochemical and ecological observation systems will allow for significant advances in the development and application of analysis and prediction tools for ocean biogeochemistry and ecosystems, with multiple societal benefits
- …