2,791 research outputs found

    Triple-Product Correlations in B -> V1 V2$ Decays and New Physics

    Full text link
    In this paper we examine T-violating triple-product correlations (TP's) in B -> V1 V2 decays. TP's are excellent probes of physics beyond the standard model (SM) for two reasons: (i) within the SM, most TP's are expected to be tiny, and (ii) unlike direct CP asymmetries, TP's are not suppressed by the small strong phases which are expected in B decays. TP's are obtained via the angular analysis of B -> V1 V2. In a general analysis based on factorization, we demonstrate that the most promising decays for measuring TP's in the SM involve excited final-state vector mesons, and we provide estimates of such TP's. We find that there are only a handful of decays in which large TP's are possible, and the size of these TP's depends strongly on the size of nonfactorizable effects. We show that TP's which vanish in the SM can be very large in models with new physics. The measurement of a nonzero TP asymmetry in a decay where none is expected would specifically point to new physics involving large couplings to the right-handed b-quark.Comment: 42 pages, LaTeX, no figures. Title changed, several explanatory paragraphs added, references added, analysis and conclusions unchange

    Equilibrium configurations of two charged masses in General Relativity

    Get PDF
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    Form factors for B>πlνB-->\pi l\nu decay in a model constrained by chiral symmetry and quark model

    Get PDF
    The form factors for the B>πB-->\pi transition are evaluated in the entire momentum transfer range by using the constraints obtained in the framework combining the heavy quark expansion and chiral symmetry for light quarks and the quark model. In particular, we calculate the valence quark contributions and show that it together with the equal time commutator contribution simulate a B-meson pole q^2-dependence of form factors in addition to the usual vector meson B^{*}-pole diagram for B>πlνB --> \pi l\nu in the above framework. We discuss the predictions in our model, which provide an estimate of |V_{ub}|^2.Comment: 7 pages, Revtex, 5 figure, fig 3 is replaced and some text is adde

    Parity Doubling and the S Parameter Below the Conformal Window

    Get PDF
    We describe a lattice simulation of the masses and decay constants of the lowest-lying vector and axial resonances, and the electroweak S parameter, in an SU(3) gauge theory with Nf=2N_f = 2 and 6 fermions in the fundamental representation. The spectrum becomes more parity doubled and the S parameter per electroweak doublet decreases when NfN_f is increased from 2 to 6, motivating study of these trends as NfN_f is increased further, toward the critical value for transition from confinement to infrared conformality.Comment: 4 pages, 5 figures; to be submitted to PR

    Many-Body Currents and the Strange-Quark Content of 4he

    Get PDF
    Meson-exchange current (MEC) contributions to the parity-violating (PV) asymmetry for elastic scattering of polarized electrons from 4^4He are calculated over a range of momentum transfer using Monte Carlo methods and a variational 4^4He ground state wavefunction. The results indicate that MEC's generate a negligible contribution to the asymmetry at low-|\qv|, where a determination of the nucleon's mean square strangeness radius could be carried out at CEBAF. At larger values of momentum transfer -- beyond the first diffraction minimum -- two-body corrections from the ρ\rho-π\pi \lq\lq strangeness charge" operator enter the asymmetry at a potentially observable level, even in the limit of vanishing strange-quark matrix elements of the nucleon. For purposes of constraining the nucleon's strangeness electric form factor, theoretical uncertainties associated with these MEC contributions do not appear to impose serious limitations.Comment: 32 TEX pages and 7 figures (not included, available from authors upon request), CEBAF Preprint #TH-94-1

    A Tale of Two Current Sheets

    Full text link
    I outline a new model of particle acceleration in the current sheet separating the closed from the open field lines in the force-free model of pulsar magnetospheres, based on reconnection at the light cylinder and "auroral" acceleration occurring in the return current channel that connects the light cylinder to the neutron star surface. I discuss recent studies of Pulsar Wind Nebulae, which find that pair outflow rates in excess of those predicted by existing theories of pair creation occur, and use those results to point out that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the "σ\sigma" problem as a consequence of the lower wind 4-velocity implied by the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    Cytotoxic polyfunctionality maturation of cytomegalovirus-pp65-specific CD4 + and CD8 + T-cell responses in older adults positively correlates with response size

    Get PDF
    Cytomegalovirus (CMV) infection is one of the most common persistent viral infections in humans worldwide and is epidemiologically associated with many adverse health consequences during aging. Previous studies yielded conflicting results regarding whether large, CMV-specific T-cell expansions maintain their function during human aging. In the current study, we examined the in vitro CMV-pp65-reactive T-cell response by comprehensively studying five effector functions (i.e., interleukin-2, tumor necrosis factor-α, interferon-γ, perforin, and CD107a expression) in 76 seropositive individuals aged 70 years or older. Two data-driven, polyfunctionality panels (IL-2-associated and cytotoxicity-associated) derived from effector function co-expression patterns were used to analyze the results. We found that, CMV-pp65-reactive CD8 + and CD4 + T cells contained similar polyfunctional subsets, and the level of polyfunctionality was related to the size of antigen-specific response. In both CD8 + and CD4 + cells, polyfunctional cells with high cytotoxic potential accounted for a larger proportion of the total response as the total response size increased. Notably, a higher serum CMV-IgG level was positively associated with a larger T-cell response size and a higher level of cytotoxic polyfunctionality. These findings indicate that CMV-pp65-specific CD4 + and CD8 + T cell undergo simultaneous cytotoxic polyfunctionality maturation during aging

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure
    corecore