301 research outputs found

    GTI-space : the space of generalized topological indices

    Get PDF
    A new extension of the generalized topological indices (GTI) approach is carried out torepresent 'simple' and 'composite' topological indices (TIs) in an unified way. Thisapproach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randićconnectivity indices are expressed by means of the same GTI representation introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI), Gutman index andreverse MTI. Using GTI-space approach we easily identify mathematical relations between some composite and simple indices, such as the relationship between hyper-Wiener and Wiener index and the relation between MTI and first Zagreb index. The relation of the GTI space with the sub-structural cluster expansion of property/activity is also analysed and some routes for the applications of this approach to QSPR/QSAR are also given

    Resistance distance, information centrality, node vulnerability and vibrations in complex networks

    Get PDF
    We discuss three seemingly unrelated quantities that have been introduced in different fields of science for complex networks. The three quantities are the resistance distance, the information centrality and the node displacement. We first prove various relations among them. Then we focus on the node displacement, showing its usefulness as an index of node vulnerability.We argue that the node displacement has a better resolution as a measure of node vulnerability than the degree and the information centrality

    To what extent is Gluon Confinement an empirical fact?

    Get PDF
    Experimental verifications of Confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about Gluon Confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.Comment: 14 pages, 12 figures, version accepted at Few Body Physic

    International Network for Capacity Building for the Control of Emerging Viral Vector-Borne Zoonotic Diseases: Arbo-Zoonet

    Get PDF
    Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different domestic and wild animals and in humans, posing a threat to public health because of their epidemic and zoonotic potential. In recent decades, the geographical distribution of these diseases has expanded. Outbreaks of WNF have already occurred in Europe, especially in the Mediterranean basin. Moreover, CCHF is endemic in many European countries and serious outbreaks have occurred, particularly in the Balkans, Turkey and Southern Federal Districts of Russia. In 2000, RVF was reported for the first time outside the African continent, with cases being confirmed in Saudi Arabia and Yemen. This spread was probably caused by ruminant trade and highlights that there is a threat of expansion of the virus into other parts of Asia and Europe. In the light of global warming and globalisation of trade and travel, public interest in emerging zoonotic diseases has increased. This is especially evident regarding the geographical spread of vector-borne diseases. A multi-disciplinary approach is now imperative, and groups need to collaborate in an integrated manner that includes vector control, vaccination programmes, improved therapy strategies, diagnostic tools and surveillance, public awareness, capacity building and improvement of infrastructure in endemic regions

    Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of E.coli

    Get PDF
    Background: Animal neurotoxin peptides are valuable probes for investigating ion channel structure/function relationships and represent lead compounds for novel therapeutics and insecticides. However, misfolding and aggregation are common outcomes when toxins containing multiple disulfides are expressed in bacteria. Methods: The ß-scorpion peptide toxin Bj-xtrIT from Hottentotta judaica and four chaperone enzymes (DsbA, DsbC, SurA and FkpA) were co-secreted into the oxidizing environment of the E.coli periplasm. Expressed Bj-xtrIT was purified and analyzed by HPLC and FPLC chromatography. Its thermostability was assessed using synchrotron radiation circular dichroism spectroscopy and its crystal structure was determined. Results: Western blot analysis showed that robust expression was only achieved when cells co-expressed the chaperones. The purified samples were homogenous and monodisperse and the protein was thermostable. The crystal structure of the recombinant toxin confirmed that it adopts the native disulfide connectivity and fold. Conclusions: The chaperones enabled correct folding of the four-disulfide-bridged Bj-xtrIT toxin. There was no apparent sub-population of misfolded Bj-xtrIT, which attests to the effectiveness of this expression method. General Significance: We report the first example of a disulfide-linked scorpion toxin natively folded during bacterial expression. This method eliminates downstream processing steps such as oxidative refolding or cleavage of a fusion-carrier and therefore enables efficient production of insecticidal Bj-xtrIT. Periplasmic chaperone activity may produce native folding of other extensively disulfide-reticulated proteins including animal neurotoxins. This work is therefore relevant to venomics and studies of a wide range of channels and receptors

    The Mango Value Network (Mangifera indica L.) in Campeche, Mexico

    Get PDF
    Objective: Characterize the mango value network in the State of Campeche and identify its problems. Design/methodology/approach: Based on documentary information and 40 semi-structured interviews, the structure of the value network, its key actors, and technologies were identified. Results: Researchers advise to establish high-density orchards (3 333 plants ha-1), although growers accept to increment from 69 to only 278 plants ha-1. New production technologies are required for important cultivars, such as Tommy Atkins, Manila, and creole. Their vegetative growth responds differently to local humidity, rain, and soil conditions, due to their monoembryonic or polyembryonic origin. Limitations of the study/implications:  Producers in the social sector do not keep accounting and production records. An estimate of mango yields, investment, income, and profits was obtained based on the opinion of producers from the social and business sector of Campeche. Findings/conclusions: Social sector producers of mango are willing to grow their orchards with 278 plants ha-1; it is required to evaluate the production technologies of Tommy Atkins, Manila, and creole cultivars, and to estimate the production costs. Private sector growers are choosing to substitute mango for high-density Persian lemon; they also prioritize fruit fly management and commercialization of fruits.Objective: Characterize the mango value network in the State of Campeche and identify its problems. Design/methodology/approach: Based on documentary information and 40 semi-structured interviews, the structure of the value network, its key actors, and technologies were identified. Results: Researchers advise to establish high-density orchards (3 333 plants ha-1), although growers accept to increment from 69 to only 278 plants ha-1. New production technologies are required for important cultivars, such as Tommy Atkins, Manila, and creole. Their vegetative growth responds differently to local humidity, rain, and soil conditions, due to their monoembryonic or polyembryonic origin. Limitations of the study/implications:  Producers in the social sector do not keep accounting and production records. An estimate of mango yields, investment, income, and profits was obtained based on the opinion of producers from the social and business sector of Campeche. Findings/conclusions: Social sector producers of mango are willing to grow their orchards with 278 plants ha-1; it is required to evaluate the production technologies of Tommy Atkins, Manila, and creole cultivars, and to estimate the production costs. Private sector growers are choosing to substitute mango for high-density Persian lemon; they also prioritize fruit fly management and commercialization of fruits

    Coulomb gauge approach to (qqg)over-bar hybrid mesons

    Get PDF
    An effective Coulomb gauge Hamiltonian, H-eff, is used to calculate the light ( u (u) over barg), strange ( s (s) over barg) and charmed (c (c) over barg) hybrid meson spectra. For the same two parameter H-eff providing glueball masses consistent with lattice results and a good description of the observed u, d, s and c quark mesons, a large-scale variational treatment predicts that the lightest hybrid has J(PC) = 0(++) and mass 2.1 GeV. The lightest exotic 1(-+) state is just above 2.2 GeV, near the upper limit of lattice and flux tube predictions. These theoretical formulations all indicate that the observed 1(-+) pi(1)(1600) and, more clearly, pi(1)(1400) are not hybrid states. The Coulomb gauge approach further predicts that in the strange and charmed sectors, respectively, the ground state hybrids have 1(+-) with masses 2.1 and 3.8 GeV, while the. rst exotic 1( +) states are at 2.4 and 4.0 GeV. Finally, using our hybrid wavefunctions and the Franck-Condon principle, a novel experimental signature is presented to assist heavy hybrid meson searches

    Spontaneous chiral symmetry breaking in the linked cluster expansion

    Get PDF
    We investigate dynamical chiral symmetry breaking in the Coulomb gauge Hamiltonian QCD. Within the framework of the linked cluster expansion we extend the BCS ansatz for the vacuum and include correlation beyond the quark-antiquark paring. In particular we study the effects of the three-body correlations involving quark-antiquark and transverse gluons. The high momentum behavior of the resulting gap equation is discussed and numerical computation of the chiral symmetry breaking is presented.Comment: 13 pages, 9 figure

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

    Full text link
    From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, 12ω\sum\frac12\hbar\omega, seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, T00\langle T_{00}\rangle, typically diverge near boundaries. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein's equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros
    corecore