853 research outputs found

    Superlattice Structures of Graphene based Nanoribbons

    Get PDF
    Based on first-principles calculations we predict that periodically repeated junctions of armchair graphene nanoribbons of different widths form superlattice structures. In these superlattice heterostructures the width and the energy gap are modulated in real space and specific states are confined in certain segments. Orientation of constituent nanoribbons, their width and length, the symmetry of the junction are the structural parameters to engineer electronic properties of these quantum structures. Not only the size modulation, but also composition modulation, such as periodically repeated, commensurate heterojunctions of BN and graphene honeycomb nanoribbons result in a multiple quantum well structure. We showed that these graphene based quantum structures can introduce novel concepts to design nanodevices.Comment: amended versio

    Bloch Oscillation under a Bichromatic Laser: Quasi-Miniband Formation, Collapse, and Dynamical Delocalization and Localization

    Full text link
    A novel DC and AC driving configuration is proposed for semiconductor superlattices, in which the THz AC driving is provided by an intense bichromatic cw laser. The two components of the laser, usually in the visible light range, are near but not exactly resonant with interband Wannier-Stark transitions, and their frequency difference equals the Wannier-Stark ladder spacing. Multi-photon processes with the intermediate states in the conduction (valence) band cause dynamical delocalization and localization of valence (conduction) electrons, and the corresponding formation and collapse of the quasi-minibands.Comment: 4 pages, 3 figure

    Real time Power Capping with Smart Circuit Breaker to maximize Power Utilization of Local Generator

    Get PDF
    Effective energy management and control is an important and urgent issue in the emerging and developing countries, so as to achieve their sustainable growth, because of poor quality of power supply by their electric power companies. In order to come up with the frequent electric power outage by the power company, most of buildings in developing and emerging countries install a power generator. Although because of poor control system in the premises, utilization factor of output capability of power generators is typically low except at peak periods. To improve the utilization factor of power generator, we propose a system, which can manage power segments in the building using SCB (Smart Circuit Breaker). SCBs are connected by wireless technologies with battery backup, and set their power capping based on the indication issued by central manager. The central manager computes power capping threshold of each SCB using the proposed algorithm, in real-time fashion. Experimental results show that the proposed algorithm can optimize the required capacity of the local power generator and that we need a feedback-looped adaptive threshold calculation algorithm

    Large deformation analysis of ground with wall movement or hallow foundation under extremely low confining pressure using PIV

    Get PDF
    Large-scale natural disasters have occurred frequently in recent years. In such disasters, large ground deformation has been a recurring phenomenon. As it directly affects the structure, has dureable design is necessitated to minimize the damages. Additionally, the fracture process zones are predicted using numerical analysis, and thereafter, the results of the analysis are validated after comparison with the experimental ones. In this study, image analysis is performed using particle image velocimetry (PIV), and subsequently, the analysis results are validated by the comparison. We herein aim to improve the precision of the image-analysis results, and examine the experimental or analytical condition of reproducing the deformation

    Symmetry-breaking and chaos in electron transport in semiconductor superlattices

    Get PDF
    We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].Comment: 4 pages, 3 figures, RevTEX, EPS

    Transient response of a quantum wave to an instantaneous potential step switching

    Get PDF
    The transient response of a stationary state of a quantum particle in a step potential to an instantaneous change in the step height (a simplified model for a sudden bias switch in an electronic semiconductor device) is solved exactly by means of a semianalytical expression. The characteristic times for the transient process up to the new stationary state are identified. A comparison is made between the exact results and an approximate method.Comment: 8 pages, 8 figures, Revtex

    Effect of nonlinearity on the dynamics of a particle in dc field-induced systems

    Get PDF
    Dynamics of a particle in a perfect chain with one nonlinear impurity and in a perfect nonlinear chain under the action of dc field is studied numerically. The nonlinearity appears due to the coupling of the electronic motion to optical oscillators which are treated in adiabatic approximation. We study for both the low and high values of field strength. Three different range of nonlinearity is obtained where the dynamics is different. In low and intermediate range of nonlinearity, it reduces the localization. In fact in the intermediate range subdiffusive behavior in the perfect nonlinear chain is obtained for a long time. In all the cases a critical value of nonlinear strength exists where self-trapping transition takes place. This critical value depends on the system and the field strength. Beyond the self-trapping transition nonlinearity enhances the localization.Comment: 9 pages, Revtex, 6 ps figures include

    Bloch oscillations, Zener tunneling and Wannier-Stark ladders in the time-domain

    Get PDF
    We present a time-domain analysis of carrier dynamics in a semiconductor superlattice with two minibands. Integration of the density-matrix equations of motion reveals a number of new features: (i) for certain values of the applied static electric field strong interband transitions occur; (ii) in static fields the complex time-dependence of the density-matrix displays a sequence of stable plateaus in the low field regime, and (iii) for applied fields with a periodic time-dependence the dynamic response can be understood in terms of the quasienergy spectra.Comment: 4 pages, 6 PostScript figures available from [email protected], REVTEX 3.

    Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices

    Full text link
    We report an experimental study of miniband magnetoconduction in semiconducting InAs/GaSb superlattices. For samples with miniband widths below the longitudinal optical phonon energy we identify a new superlattice magnetophonon resonance (SLMPR) caused by resonant scattering of electrons across the mini-Brillouin zone. This new resonant feature arises directly from the drift velocity characteristics of the superlattice dispersion and total magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model

    Full text link
    A discrete model is introduced to account for the time-periodic oscillations of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40 period AlAs/GaAs superlattice. Basic ingredients are an effective negative differential resistance due to the sequential resonant tunneling of the photoexcited carriers through the potential barriers, and a rate equation for the holes that incorporates photogeneration and recombination. The photoexciting laser acts as a damping factor ending the oscillations when its power is large enough. The model explains: (i) the known oscillatory static I-V characteristic curve through the formation of a domain wall connecting high and low electric field domains, and (ii) the photocurrent and photoluminescence time-dependent oscillations after the domain wall is formed. In our model, they arise from the combined motion of the wall and the shift of the values of the electric field at the domains. Up to a certain value of the photoexcitation, the non-uniform field profile with two domains turns out to be metastable: after the photocurrent oscillations have ceased, the field profile slowly relaxes toward the uniform stationary solution (which is reached on a much longer time scale). Multiple stability of stationary states and hysteresis are also found. An interpretation of the oscillations in the photoluminescence spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9
    corecore