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We present a time-domain analysis of carrier dynamics in a semiconductor superlattice with two
minibands. Integration of the density-matrix equations of motion reveals a number of new features: (i)
for certain values of the applied static electric field strong interminiband transitions occur; (ii) in static
fields the complex time dependence of the density matrix displays a sequence of stable plateaus in the
low field regime, and (iii) for harmonic fields the Fourier representation of the density matrix is shown

to be intimately related to the quasienergy spectrum.

PACS numbers: 73.20.Dx, 73.40.Gk, 73.50.Fq

Bloch oscillations (BO) are one of the most striking
predictions of the semiclassical theory of electronic trans-
port: In any system of independent electrons in a periodic
potential the electron velocity becomes a periodic func-
tion of time with characteristic frequency wp = eEd/#h,
where d is the lattice period and E is the applied field
[1]. In ordinary bulk materials these oscillations cannot
be seen, because collisions dephase the coherent motion
of electrons on a time scale which is much shorter than
Tp = 27 /wp. However, as pointed out by Esaki and Tsu
[2]. the conditions for observing BO’s are much less strin-
gent for high-quality semiconductor superlattices. Recent
years have witnessed an intense experimental activity in
this area, culminating in the observation of terahertz radi-
ation from coherently oscillating electrons [3].

There has been equal activity on the theoretical side.
Holthaus [4] analyzed the semiclassical motion of elec-
trons in a single miniband subjected to a strong alter-
nating electric field. Studies of this kind have gained
importance due to the emerging free-electron lasers [5],
which open the possibility of experimental probing of the
theoretical predictions. For certain values of the system
parameters a dynamical localization takes place [6]: the
average velocity vanishes. This phenomenon can alterna-
tively be called band collapse [4]. Analogies between the
Josephson effect and electronic motion in periodic poten-
tials have been discussed several times [7]. Very recently,
Meier et al. [8] considered coherent motion of photoex-
cited carriers in the presence of Coulomb interaction, and
found out that BO’s should persist even in the limit where
the exciton binding energy is comparable to the miniband
width.

The papers quoted above have mainly concentrated on
studying systems with one miniband [9]; the central theme
in the present work is to study the dynamics of electrons
in a two-band superlattice. The second miniband adds an
essential feature to the model: It is possible to study how
Zener tunneling affects the dynamics of the carriers. Our
method consists of setting up, and solving, the density-
matrix equations of motion for the two-band system. In
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this paper we focus on the coherent part of the motion.
This coherent motion displays in its own right a number of
interesting features, which we shall describe after having
sketched the general formalism.

First we need to define the microscopic model underly-
ing the density matrix calculation. The model Hamilton-
ian is

H = Z[(AS + neEd)ala, + (A} + neEd)b}b,

n
a

Ab
- Tl(art+lan + alan+1) + Tl(b:]:+lbn + b,Tbn+l)

+ eER(alby + b;a,,>] )

The integers n label the lattice sites and the operators a
and b refer to electrons in the two minibands; the first two
terms give the (field-dependent) site energies, the next two
describe site-to-site hopping, and the last one is the term
responsible for the interminiband transfer. The overlap
matrix element R is model dependent and may depend
on time through its momentum argument; we take it as
a constant corresponding to a Kronig-Penney model. At
zero applied field (1) leads to two minibands, €*?(k) =
ALY 7 (AY"/2) cos(kd), while at finite static fields the
spectrum consists of two interpenetrating Wannier-Stark
(WS) ladders [10]: €%* = A§ + eEdr®® — meEd. The
numbers r%?(E) must be determined numerically, and
results of such a calculation are shown in Fig. 1. It is
important to notice that for certain field values the two
levels come very close to each other; as we shall show
below this leads to profound effects on Zener tunneling.
Let us next consider the equation of motion for the
density matrix for a and b electrons. ‘With accelerated
Bloch states as the basis [11], the diagonal elements of
the density matrix give the electron density at a k point
following the semiclassical trajectory in reciprocal space,
k(1) = K — (e/k) [o E(t')dt’. We assume equilibrium at
t = 0, when the density matrix is diagonal. Defining
p(K,1) = p&(t) = p2(r), we find the following equa-
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FIG. 1. Energy spectrum for a two-band superlattice as a
function of applied dc field; continuous line corresponds to
Eq. (1), while asterisks represent a model with no interminiband
coupling (R = 0). The sugerlattice parameters are d = 10
nm, A{ = 0.8 X 1072 eV, A7 = 0.92 X 1072 eV, A% = Aj —
A§ =20 X 1072 eV, and R = —16d/97*. The arrows indicate
the three field strengths used in Fig. 2.

tions of motion [12]:
p+(K, 1) =0, 2)

p—(K,t) = —Re«{h(K,z)fOt dt’h*(K,t’)p,(K,t’)},
3)

where

h(K,t) = 2%E(t)R exp[wé ](;t Ae(k(t")) dt':| = pe'®.
(€]

In the above equations we have defined Ae(k) = €”(k) —
€“(k), and assumed that the intraminiband couplings are
identical [13].

Equations (2)—(4) require several comments. If the in-
terminiband coupling is turned off, they reduce to the
normal collisionless Boltzmann equation (for two mini-
bands), and thus contain, as special cases, the follow-
ing standard results: (i) for static field one finds standard
Bloch oscillations; and (ii) a harmonic E field leads to
the above mentioned analog with Josephson effect, and,
in particular, reproduces the band collapse discussed by
Holthaus [4]. Note that only p_ is affected by intermini-
band transitions, while p4, which fixes the particle den-
sity, is a constant of motion.

By differentiating the equation of motion for p_ with
respect to time, one finds [12]

. . .
bo— Lp + ulp_ + uq‘sf ar®P= _ . (5)
u 0 u
Equation (5) forms the basis of our analysis, and the rest
of this paper will describe the numerical results obtained
from it under a number of specific physical conditions.

Steady fields.—In this case the dc field is turned on
abruptly at 7 = 0. From Eq. (4) u is time independent,
and Eq. (5) can be reduced to an ordinary third order
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differential equation:

PP — bp- + P + $Np- — uPp- =0. (6)

The accompanying initial conditions are p_(0) = p?,
p-(0) =0, and p_(0) = —u?p_(0). Thus, the initial
values are determined by the miniband parameters, the k
point in the Brillouin zone, and the temperature [which
enters through p_(0)]. From Eq. (5) it follows that
p-(K,0) can be chosen equal to 1 without loss of
generality.

Figure 2 displays a typical time dependence of p_, ob-
tained from Eq. (5) by numerical integration. One ob-
serves a very sensitive behavior with respect to variations
of the applied field. For certain field values an “inver-
sion” takes place: p_ reaches —1, which is the negative
of its initial value, while for other nearby field values p_—
stays close to its initial value. This behavior can be un-
derstood by examining Fig. 1: The two energy levels are
very close to each other for certain electric field strengths,
and in the corresponding neighborhoods a strongly en-
hanced band-to-band transfer takes place. This situation is
quite different from what one expects from simple Zener
tunneling theory [1]: there the tunneling rate is a mono-
tonic function of the applied field [14]. The situation is
summarized in Fig. 3, where we plot these Zener reso-
nances as a function of the applied field. One can assign
an index to the resonances: The resonance at the high-
est field (which corresponds approximately to aligning the
levels at adjacent quantum wells) is called the first reso-
nance, the next highest the second resonance (the case of
Fig. 2), and so forth. Adopting this numbering scheme we
observe that in the low field limit E® =~ A%?/ned (here
Abe = AL — AD).

Further insight into the physical meaning of the various
oscillations of Fig. 2 can be obtained by considering the
Fourier transform of p_. Let us first try to establish a
qualitative picture of what to expect. The initial state
of the system is described by some wave function, say,

1.0 ]
.05 WM Mﬂ%
* o.0f $ ]

0.5} ]
~1.0 . / e

0] 5 10 15 20 25

FIG. 2. Time dependence of p_(K = 0) for three different
field values: top, e¢E = 1.1 X 10° middle, 0.9 X 10° and
bottom, 1.02 X 10° eV/m, respectively. For clarity, we have
shifted the top and middle curve upwards by 0.4 and 0.2,
respectively. The superlattice parameters are as in Fig. 1, and
the unit on the time axis is 103/4/eV = 4.14 ps.
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FIG. 3. The negative of p™" as a function of applied field.
If —p™" = 1, a strong band-to-band transfer is taking place
(“Zener resonance”). The dashed lines mark where the WS
ladder separation has local minima.

|W(0)), which is not an eigenstate after the field has been
turned on. However, it can be expanded in terms of
the eigenstates: |[W(0)) = >, ¢, % + d,yt. Since p(t) =
[W ()Y W(s)l, and each eigenstate evolves according to
Yt () = exp(—ie2?t)yd?, large Fourier components in
p- are expected to occur at fiw = meEd and how =
+eEd(r* — r?) + meEd [15]. This expectation is fully
born out by the numerical evaluation of p_(w). Figure 4
shows the results of the two independent calculations:
the continuous lines are obtained based on Fig. 1, while
the asterisks come from the Fourier transform of p_(z).
Naturally, the more laborious calculation based on p_(¢)
contains also more information: The magnitudes of the
Fourier components (not shown in the figure) are needed
in the evaluation of other physical quantities, such as the
current, which will be addressed elsewhere [12].

It is also of interest to examine the effect of varying
the superlattice parameters. Figure 5 shows the time
dependence of p_(K = 0) when the field is tuned to
the eighth Zener resonance and we have increased the
bandwidths and interminiband coupling. A distinctive set
of stable plateaus has developed. The transitions between

3.5
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Energy/eEd
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0 50 100 150 200
1/eE [1078 m/eV]

FIG. 4. Fourier spectrum of p_(K = 0,1). The most signifi-
cant peaks in the Fourier spectrum are indicated by asterisks,
and the continuous lines are energy differences between the in-
terpenetrating WS ladders.
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FIG. 5. Time dependence of p_(K = 0) for superlattice pa-
rameters A{ = A7 = 1.8 X 1072 eV, A» =20 X 1072 eV,
and R = —0.9d. Units for the time axis are as in Fig. 2, and

the field is E = 0.232 X 10° V/m, corresponding to the eighth
Zener resonance.

the plateaus occur at instants ¢ = %TB, %TB, %TB, ... after
the field was turned on. Thus, the lifetime of a plateau is
(approximately) equal to the Bloch period, and transitions
occur every time the k point reaches the Brillouin zone
edge [16]. This behavior is generic to the low field
regime, E = A%?/ed, and we can qualitatively understand
features in the time dependence of p_(t) by considering
the semiclassical motion of a k point between the extrema
of the Brillouin zone; transitions to the other minibands
occur mainly at zone edges, where the energy separation
between the minibands is at a minimum.

We can also understand the number of oscillations
on a given plateau by examining Eq. (5) under some
simplifying assumptions. In particular, if we assume that
Ae has a weak time dependence, it is easy to solve (5)
analytically. The solution suggests defining a “local”
time dependent frequency for a general, but sufficiently
slowly varying Ae to be w?(t) = w? + w3(k(¢)). Here
w, = 2(|R|/d)wp and hiwy(k) = Ae(k). Thus, in the low
field limit we can identify the number of oscillations
Nose = {w(2))/wp = AP?/hwp, where the time average
was calculated over the Bloch period T5. Consequently,
at the nth Zener resonance, we find Nosc = n . In Fig. 2
one can distinguish two periods of oscillation in any of
the plateaus (even though the plateaus are not very clearly
resolved for this particular set of parameters), while Fig. 5
clearly shows eight periods of oscillation within a plateau.

In the high field regime, E > A% /ed, the situation
differs drastically from semiclassical expectations: the
plateaus vanish, and we find from Eq. (6), both numer-
ically and analytically, that p_(¢) oscillates between —1
and +1 with a single frequency w..

Alternating fields.—In the case of a temporally pe-
riodic driving field one can make a close parallel to
the treatment of a spatially periodic potential. Given
a Hamiltonian with H(z + T) = H(t), the starting
point is Floquet’s theorem applied to the Schrodinger
equation. This gives wave functions of the form
e = exp(—iet)uc(t), where u(t + T) = u.(r). We have
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FIG. 6. Quasienergy spectrum for the superlattice of Fig. 1.
We display the field dependence of 17 K points, which
are evenly distributed in the positive half of the Brillouin
zone, K € [0,7/d] (due to evenness of the quasienergy
spectrum negative K’s would be redundant). The vertical
lines indicate where the band collapse would occur for
noninteracting minibands. The modulation frequency is w,. =
1.5 X 1072 eV/h.

introduced the quasienergy e, which is defined modulo
w,e = 27 /T, leading in a natural way to the definition
of a quasienergy Brillouin zone. The functions ¢, are
eigenstates to S = H — [hd/ot, i.e., they are given
by the temporal Bloch theorem applied to S. These
considerations have been employed by Holthaus [4] in
his analysis of the one-miniband case, and we now wish
to extend these concepts to two minibands in the context
of the Hamiltonian (1). The quasienergy spectrum for
an applied field of the form E(z) = E; cos w,.r is shown
in Fig. 6 [17]. For vanishing band coupling the band
collapses occur whenever eE ;d/lw,. equals a root of
the zeroth Bessel function, and we observe that the
two-band model displays strict band collapse at only
one of these roots. However, there is a clear tendency
towards bandwidth narrowing at the other roots.

The next step in the analysis is to solve the equation of
motion for p_(K, ) for the time dependent case. One can
perform a construction as in Fig. 4; now the quasienergy
differences (modulo w,.) correspond to the leading Fourier
components of p_(K,w). Since the quasienergy differ-
ences depend on K (see Fig. 6), the construction of Fig. 4
must be done separately for each K. Just as in the static
case we can relate the various features in the time depen-
dence of p_(K, 1) to the details of the quasienergy spectrum
of Fig. 6. The detailed analysis is postponed to our full pa-
per [12], but here we point out that in the low field limit,
E; < hw,./ed, the interminiband tunneling is quenched,
and the time dependence is described by the semiclassical
equations of motion.

Let us comment on the experimental possibilities of ob-
serving the phenomena predicted in this work. While the
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full inversion of p_ requires coherence time scales of tens
of picoseconds, which is large by present experimental
standards, many other aspects, such as the plateaus, oc-
cur on a much shorter time scale, and should therefore be
more easily detected. Further, by optimizing the super-
lattice parameters it is possible to obtain more favorable
conditions for experiments.

In summary, we have presented a time-dependent
formulation of transport in superlattices. We have found
that the dynamics of the two-band model can show, in
addition to conventional Bloch oscillations, significant
additional structure: Zener resonances, stable plateaus,
and band collapses.
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