2,400 research outputs found

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Medial collateral ligament injuries of the knee: current treatment concepts

    Get PDF
    The medial collateral ligament is one of the most commonly injured ligaments of the knee. Most injuries result from a valgus force on the knee. The increased participation in football, ice hockey, and skiing has all contributed to the increased frequency of MCL injuries. Prophylactic knee bracing in contact sports may prevent injury; however, performance may suffer. The majority of patients who sustain an MCL injury will achieve their pre-injury activity level with non-operative treatment alone; however, those with combined ligamentous injuries may require acute operative care. Accurate characterization of each aspect of the injury will help to determine the optimum treatment plan

    27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore

    Get PDF
    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3–4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6–7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates

    The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems

    Get PDF
    Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work

    Eukaryotic Cells Producing Ribosomes Deficient in Rpl1 Are Hypersensitive to Defects in the Ubiquitin-Proteasome System

    Get PDF
    It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.United States. National Institutes of Health (GM25532)United States. National Institutes of Health (ARRAGM25532-S1)United States. National Institutes of Health (GM085177)United States. National Institutes of Health (CAI-3330)Natural Sciences and Engineering Research Council of Canada (NSERC

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Statistical Methods in Recent HIV Noninferiority Trials: Reanalysis of 11 Trials

    Get PDF
    Background: In recent years the ‘‘noninferiority’ ’ trial has emerged as the new standard design for HIV drug development among antiretroviral patients often with a primary endpoint based on the difference in success rates between the two treatment groups. Different statistical methods have been introduced to provide confidence intervals for that difference. The main objective is to investigate whether the choice of the statistical method changes the conclusion of the trials. Methods: We presented 11 trials published in 2010 using a difference in proportions as the primary endpoint. In these trials, 5 different statistical methods have been used to estimate such confidence intervals. The five methods are described and applied to data from the 11 trials. The noninferiority of the new treatment is not demonstrated if the prespecified noninferiority margin it includes in the confidence interval of the treatment difference. Results: Results indicated that confidence intervals can be quite different according to the method used. In many situations, however, conclusions of the trials are not altered because point estimates of the treatment difference were too far from the prespecified noninferiority margins. Nevertheless, in few trials the use of different statistical methods led to different conclusions. In particular the use of ‘‘exact’ ’ methods can be very confusing. Conclusion: Statistical methods used to estimate confidence intervals in noninferiority trials have a strong impact on th

    Cardiac tumours in children

    Get PDF
    Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT) and Magnetic Resonance Imaging (MRI) of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor

    Pulmonary Vaccination as a Novel Treatment for Lung Fibrosis

    Get PDF
    Pulmonary fibrosis is an untreatable, uniformly fatal disease of unclear etiology that is the result of unremitting chronic inflammation. Recent studies have implicated bone marrow derived fibrocytes and M2 macrophages as playing key roles in propagating fibrosis. While the disease process is characterized by the accumulation of lymphocytes in the lung parenchyma and alveolar space, their role remains unclear. In this report we definitively demonstrate the ability of T cells to regulate lung inflammation leading to fibrosis. Specifically we demonstrate the ability of intranasal vaccinia vaccination to inhibit M2 macrophage generation and fibrocyte recruitment and hence the accumulation of collagen and death due to pulmonary failure. Mechanistically, we demonstrate the ability of lung Th1 cells to prevent fibrosis as vaccinia failed to prevent disease in Rag−/− mice or in mice in which the T cells lacked IFN-γ. Furthermore, vaccination 3 months prior to the initiation of fibrosis was able to mitigate the disease. Our findings clearly demonstrate the role of T cells in regulating pulmonary fibrosis as well as suggest that vaccinia-induced immunotherapy in the lung may prove to be a novel treatment approach to this otherwise fatal disease
    corecore