14 research outputs found

    Fluorescence-Tracking of Activation Gating in Human ERG Channels Reveals Rapid S4 Movement and Slow Pore Opening

    Get PDF
    Background: hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening. Methods and Findings: Tetramethylrhodamine-5-maleimide (TMRM) fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449) in the S1–S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the VK of activation to 227.562.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1–S2 linker cysteines with valines allowed unobstructed recording of S3–S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-VON, with VK,1 = 237.861.7 mV, and VK,2 = 43.567.9 mV. The first phase, VK,1, was,20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-VK = 218.361.2 mV), and relatively unchanged in a non-inactivating E519C:S620T mutant (V K = 234.461.5 mV), suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarizatio

    Variable expression of long QT syndrome among gene carriers from families with five different HERG mutations

    No full text
    Abstract OBJECTIVES: This study assessed the phenotypic variability of LQTS in carriers with the same and with different mutations in the LQT2 gene. BACKGROUND: Mutations of ion-channel genes are known to cause the long QT syndrome (LQTS), a disorder associated with distinctive genotypic-specific electrocardiographic patterns and variable clinical expression. METHODS: Clinical and electrocardiographic characteristics were assessed in five large LQTS families, each with a different mutation of the HERG gene (LQT2; n = 469, 69% genotyped, 102 carriers). One mutation was located on the N-terminus and the other four on the C-terminus of the HERG channel protein. RESULTS: The QTc duration and the frequency of cardiac events (syncope and LQTS-related cardiac arrest/death) were similar among carriers with the five HERG mutations. QTc was as variable in carriers of the same mutation as it was among carriers with different HERG mutations (P = 0.19). Qualitative assessment of the electrocardiograms revealed extensive intra-and interfamilial variability in T-wave morphology. Among carriers with multiple electrocardiograms extending over 2 to 7 years, variation in QTc over time was minimal. A strong association was found between QTc and the occurrence of cardiac events in carriers of all five mutations. CONCLUSIONS: The clinical expression of LQTS was equally variable in carriers from families with the same or different HERG mutations. These findings highlight the complexity of the clinical phenotype in this Mendelian dominant disorder and suggest that one or more modifier genes contribute to the variable expression of this syndrome

    Novel characteristics of a misprocessed mutant HERG channel linked to hereditary long QT syndrome

    No full text
    Hereditary long QT syndrome (hLQTS) is a heterogeneous genetic disease characterized by prolonged QT interval in the electrocardiogram, recurrent syncope, and sudden cardiac death. Mutations in the cardiac potassium channel HERG (KCNH2) are the second most common form of hLQTS and reduce the delayed rectifier K(+) currents, thereby prolonging repolarization. We studied a novel COOH-terminal missense mutation, HERG R752W, which segregated with the disease in a family of 101 genotyped individuals. When the mutant cRNA was expressed in Xenopus oocytes it produced enhanced rather than reduced currents. Simulations using the Luo-Rudy model predicted minimal shortening rather than prolongation of the cardiac action potential. Consequently, a normal or shortened QT interval would be expected in contrast to the long QT observed clinically. This anomaly was resolved by our observation that the mutant protein was not delivered to the plasma membrane of mammalian cells but was retained intracellularly. We found that this trafficking defect was corrected at lower incubation temperatures and that functional channels were now delivered to the plasma membrane. However, trafficking could not be restored by chemical chaperones or E-4031, a specific blocker of HERG channels. Therefore, HERG R752W represents a new class of trafficking mutants in hLQTS. The occurrence of different classes of misprocessed channels suggests that a unified therapeutic approach for altering HERG trafficking will not be possible and that different treatment modalities will have to be matched to the different classes of trafficking mutants
    corecore