69 research outputs found

    High Acute Myeloid Leukemia derived VEGFA levels are associated with a specific vascular morphology in the leukemic bone marrow

    Get PDF
    Acute Myeloid Leukemia (AML) bone marrow biopsies at diagnosis display enhanced angiogenesis and increased VEGFA expression. In a xenograft mouse model it was described that availability of free VEGFA versus bound VEGFA is related to different vascular morphology. In this study we investigate the relationship between vascular morphology within AML bone marrow biopsies and AML derived VEGFA levels. Vessel count and surface area (Chalkley count) were calculated in AML bone marrow biopsies at diagnosis (n = 32), at remission (n = 8) and Normal Bone Marrow (n = 32) using immunohistochemical staining for FVIII, CD31, CTIV, SMA and VEGFA. VEGFA protein levels were measured. High vessel count was associated with an immature vessel status. Combining vessel count and Chalkley count different vessel morphology patterns were quantified within AML bone marrow biopsies. Three different subgroups could be distinguished. The subgroup (37.5% of the samples) exhibiting a high vessel count and vessels with predominantly large lumen (normal Chalkley count) was associated with high secreted VEGFA protein levels. Different vasculature patterns are seen in AML bone marrow biopsies, defined by combining number and size of vessel. These quantified morphology patterns, combined with VEGFA levels, might be of value in the success of VEGF/VEGFR-signaling interference approaches

    The diagnostic value of CRP, IL-8, PCT, and sTREM-1 in the detection of bacterial infections in pediatric oncology patients with febrile neutropenia

    Get PDF
    In this study, we evaluated C-reactive protein (CRP), interleukin (IL)-8, procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as predictors for bacterial infection in febrile neutropenia, plus their usefulness in febrile neutropenia during chemotherapy-induced gastrointestinal mucositis. Plasma was obtained from pediatric oncology patients at presentation with febrile neutropenia (n = 43) and 24-48 h later (n = 17). The patients were classified as having or not having a bacterial infection. Plasma was also obtained of patients in the absence and in the presence of mucositis (n = 26). At presentation with febrile neutropenia, median IL-8 and PCT levels were significantly increased in patients with a bacterial infection, in contrast to CRP and sTREM-1. IL-8 was the most sensitive marker for the early detection of bacterial infection, in combination with clinical parameters or PCT the sensitivity reached 100%. After 24-48 h, only PCT was significantly elevated during bacterial infection. IL-8 levels were significantly increased during mucositis. Mucositis did not cause considerable changes in PCT levels. IL-8 is the most useful marker for the early detection of bacterial infections, compared with CRP, PCT, and sTREM-1. IL-8 in combination with clinical parameters or PCT might be even more useful. Gastrointestinal mucositis alone does not affect PCT levels, in contrast to IL-8 levels, and therefore, PCT might be more useful for the detection of bacterial infections during mucositis than IL-8

    Induction of vasculogenesis in breast cancer models

    Get PDF
    Recently, there have been reports of postnatal vasculogenesis in cases of ischaemia models. The aim of the present study is to provide evidence of postnatal vasculogenesis in breast-cancer–bearing mice. Based on cell surface antigen expression, we isolated endothelial precursor cells from bone marrow, peripheral blood and tumour-infiltrating cells from mice that had received six human breast cancer xenografts. In all three areas (bone marrow, peripheral blood and tumour-infiltrating cells), endothelial precursor cell population was elevated in all transplanted mice. Differentiation and migration activities of endothelial precursor cells were measured by comparing levels of the endothelial precursor cell maturation markers Flk-1, Flt-1, Tie2, VE-cadherin and CD31 among these three areas. The endothelial precursor cell population was 14% or greater in the gated lymphocyte-size fraction of the inflammatory breast cancer xenograft named WIBC-9, which exhibits a hypervascular structure and de novo formation of vascular channels, namely vasculogenic mimicry (Shirakawa et al, 2001). In vitro, bone marrow-derived endothelial precursor cells from four human breast cancer xenografts proliferated and formed multiple clusters of spindle-shaped attaching cells on a vitronectin-coated dish. The attaching cells, which incorporated DiI-labelled acetylated low-density lipoprotein (DiI-acLDL) and were negative for Mac-1. The putative bone marrow derived endothelial precursor cell subset, which was double positive of CD34 and Flk-1, and comparative bone marrow derived CD34 positive with Flk-1 negative subset were cultured. The former subset incorporated DiI-acLDL and were integrated with HUVECs. Furthermore, they demonstrated significantly higher levels of murine vascular endothelial growth factor and interleukin-8 in culture supernatant on time course by enzyme-linked immunosorbent assay. These findings constitute direct evidence that breast cancer induces postnatal vasculogenesis in vivo

    Radionuclide imaging of bone marrow disorders

    Get PDF
    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed

    Endothelial progenitor cells display clonal restriction in multiple myeloma

    Get PDF
    BACKGROUND: In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. METHODS: A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (V(H)). RESULTS: In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with V(H )primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI. CONCLUSION: Our results suggest that EPCs in at least a substantial subpopulation of MM patients are related to the neoplastic clone and that this is an important mechanism for upregulation of tumor neovascularization in MM

    Systematic review and meta-analysis of the value of initial biomarkers in predicting adverse outcome in febrile neutropenic episodes in children and young people with cancer

    Get PDF
    Background: Febrile neutropenia is a frequently occurring and occasionally life-threatening complication of treatment for childhood cancer. Many biomarkers have been proposed as predictors of adverse events. We aimed to undertake a systematic review and meta-analysis to summarize evidence on the discriminatory ability of initial serum biomarkers of febrile neutropenic episodes in children and young people. Methods: This review was conducted in accordance with the Center for Reviews and Dissemination Methods, using three random effects models to undertake meta-analysis. It was registered with the HTA Registry of systematic reviews, CRD32009100485. Results: We found that 25 studies exploring 14 different biomarkers were assessed in 3,585 episodes of febrile neutropenia. C-reactive protein (CRP), pro-calcitonin (PCT), and interleukin-6 (IL6) were subject to quantitative meta-analysis, and revealed huge inconsistencies and heterogeneity in the studies included in this review. Only CRP has been evaluated in assessing its value over the predictive value of simple clinical decision rules. Conclusions: The limited data available describing the predictive value of biomarkers in the setting of pediatric febrile neutropenia mean firm conclusions cannot yet be reached, although the use of IL6, IL8 and procalcitonin warrant further study

    SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutières Syndrome Are Highly Susceptible to HIV-1 Infection

    Get PDF
    Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor

    Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    Get PDF
    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS
    corecore