377 research outputs found

    Unusual sub-genus associations of fecal Prevotella and Bacteroides with specific dietary patterns

    Get PDF
    Background: Diet has a recognized effect in shaping gut microbiota. Many studies link an increase in Prevotella to high-fibre diet, while Bacteroides abundance is usually associated with the consumption of animal fat and protein-rich diets. Nevertheless, closely related species and strains may harbour different genetic pools; therefore, further studies should aim to understand whether species of the same genus are consistently linked to dietary patterns or equally responsive to diet variations. Here, we used oligotyping of 16S rRNA gene sequencing data to exploit the diversity within Prevotella and Bacteroides genera in faecal samples of omnivore and non-omnivore subjects from a previously studied cohort. Results: A great heterogeneity was found in oligotype composition. Nevertheless, different oligotypes within the same genus showed distinctive correlation patterns with dietary components and metabolome. We found that some Prevotella oligotypes are significantly associated with the plant-based diet but some are associated with animal-based nutrients, and the same applies to Bacteroides. Therefore, an indiscriminate association of Bacteroidetes genera with specific dietary patterns may lead to an oversimplified vision that does not take into account sub-genus diversity and the different possible responses to dietary components. Conclusions: We demonstrated that Prevotella and Bacteroides oligotypes show distinctive correlation patterns with dietary components and metabolome. These results substantiate a current oversimplification of diet-dependent microbe-host associations and highlighted that sub-genus differences must be taken into account when planning gut microbiota modulation for health benefits

    Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits

    No full text
    In this study, three starter formulations including Lactobacillus curvatus and Staphylococcus xylosus strains selected in vitro on the basis of their lipolytic and proteolytic activities were employed for the manufacture of traditional fermented sausages of southern Italy. Microbial population, proteolysis, lipolysis, changes in free amino acids (FAA) and free fatty acids (FFA) and development of characteristic taste and flavor of the final product were investigated. Proteolysis and lipolysis were observed in sausages inoculated with proteolytic and lipolytic S. xylosus coupled with L. curvatus, while the sausage started with only S. xylosus without lactobacilli was identical to the non-inoculated control, indicating that the proteolysis could be due to both microbial activity and endogenous proteases activated by the decrease in pH. The statistical analysis applied to the instrumental and sensory data showed that there was an effect of the starter used on the characteristics of the sausage obtained. In particular, the control samples showed very close features different from the sausages obtained by adding starter cultures. Finally, analyzing the sensory parameters the sausages ripened without starter addition and those started without the L. curvatus AVL3 showed similar features indicating an influence of the presence of the lactobacilli on the final organoleptic quality of the sausages. An appropriate choice of a combination of strains in a starter formulation is fundamental to obtain products of the expected quality

    Environmental microbiome mapping as a strategy to improve quality and safety in the food industry

    Get PDF
    In food industries, an environmentally-adapted microbiome can colonize the surfaces of equipment and tools and be transferred to the food product or intermediates of production. These complex microbial consortia may include microbial spoilers, pathogens, as well as beneficial microbes. Advances in sequencing technologies and metagenomics provide the opportunity to map the environmental microbiome in food industries at an unprecedented depth, highlighting the importance of the resident microbial communities in influencing food quality and safety, as well as the main factors shaping its composition and activities. However, specific technical issues must be considered. Although microbiome mapping in the food industry has the potential to revolutionize food safety and quality management systems, its application as routine practice is still challenging and technical issues limit the exploitation of the powerful information that can be obtained by the application of such state-of-the-art approaches

    Animal rennets as sources of dairy lactic acid bacteria

    Get PDF
    The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions

    Gut microbiota as target for innovative strategies against food allergy.

    Get PDF
    The dramatic increase in food allergy prevalence and severity globally requires effective strategies. Food allergy derives from a defect in immune tolerance mechanisms. Immune tolerance is modulated by gut microbiota function and structure, and microbiome alterations (dysbiosis) have a pivotal role in the development of food allergy. Environmental factors, including a low-fiber/high-fat diet, cesarean delivery, antiseptic agents, lack of breastfeeding, and drugs can induce gut microbiome dysbiosis, and have been associated with food allergy. New experimental tools and technologies have provided information regarding the role of metabolites generated from dietary nutrients and selected probiotic strains that could act on immune tolerance mechanisms. The mechanisms are multiple and still not completely defined. Increasing evidence has provided useful information on optimal bacterial species/strains, dosage, and timing for intervention. The increased knowledge of the crucial role played by nutrients and gut microbiota-derived metabolites is opening the way to a post-biotic approach in the stimulation of immune tolerance through epigenetic regulation. This review focused on the potential role of gut microbiome as the target for innovative strategies against food allergy

    Milk protein digestion and the gut microbiome influence gastrointestinal discomfort after cow milk consumption in healthy subjects

    Get PDF
    Many healthy people suffer from milk-related gastrointestinal discomfort (GID) despite not being lactose intolerant; the mechanisms underpinning such condition are unknown. This study aimed to explore milk protein digestion and related physiological responses (primary outcome), gut microbiome and gut permeability in 19 lactose-tolerant healthy nonhabitual milk consumers [NHMCs] reporting GID after consuming cow milk compared to 20 habitual milk consumers [HMCs] without GID. NHMCs and HMCs participated in a milk-load (250 mL) test, underwent blood sample collection at 6 time points over 6 h after milk consumption and collected urine samples and GID self-reports over 24 h. We measured the concentrations of 31 milk-derived bioactive peptides (BAPs), 20 amino acids, 4 hormones, 5 endocannabinoid system mediators, glucose and the dipeptidyl peptidase-IV (DPPIV) activity in blood and indoxyl sulfate in urine samples. Subjects also participated in a gut permeability test and delivered feces sample for gut microbiome analysis. Results showed that, compared to HMCs, milk consumption in NHMCs, along with GID, elicited a slower and lower increase in circulating BAPs, lower responses of ghrelin, insulin, and anandamide, a higher glucose response and serum DPPIV activity. The gut permeability of the two groups was similar, while the habitual diet, which was lower in dairy products and higher in the dietary-fibre-to-protein ratio in NHMCs, possibly shaped the gut microbiome; NHMCs exhibited lower abundance of Bifidobacteria, higher abundance of Prevotella and lower abundance of protease-coding genes, which may have reduced protein digestion, as evidenced by lower urinary excretion of indoxyl sulfate. In conclusion, the findings showed that a less efficient digestion of milk proteins, supported by a lower proteolytic capability of the gut microbiome, may explain GID in healthy people after milk consumption

    Therapeutic effects elicited by the probiotic Lacticaseibacillus rhamnosus GG in children with atopic dermatitis. The results of the ProPAD trial

    Get PDF
    Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease affecting up to 20% of the pediatric population associated with alteration of skin and gut microbiome. Probiotics have been proposed for AD treatment. The ProPAD study aimed to investigate the therapeutic effects of the probiotic Lacticaseibacillus rhamnosus GG (LGG) in children with AD. Methods: In total, 100 AD patients aged 6–36 months were enrolled in a randomized, double-blind, controlled trial to receive placebo (Group A) or LGG (1 x 1010 CFU/daily) (Group B) for 12 weeks. The primary outcome was the evaluation of the efficacy of LGG supplementation on AD severity comparing the Scoring Atopic Dermatitis (SCORAD) index at baseline (T0) and at 12-week (T12). A reduction of ≥8.7 points on the SCORAD index was considered as minimum clinically important difference (MCID). The secondary outcomes were the SCORAD index evaluation at 4-week (T16) after the end of LGG treatment, number of days without rescue medications, changes in Infant Dermatitis Quality Of Life questionnaire (IDQOL), gut microbiome structure and function, and skin microbiome structure. Results: The rate of subjects achieving MCID at T12 and at T16 was higher in Group B (p <.05), and remained higher at T16 (p <.05)The number of days without rescue medications was higher in Group B. IDQOL improved at T12 in the Group B (p <.05). A beneficial modulation of gut and skin microbiome was observed only in Group B patients. Conclusions: The probiotic LGG could be useful as adjunctive therapy in pediatric AD. The beneficial effects on disease severity and quality of life paralleled with a beneficial modulation of gut and skin microbiome
    corecore