139 research outputs found

    Determination of Acr-mediated immunosuppression in Pseudomonas aeruginosa

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Data will be made available on request.Bacteria have a broad array of defence mechanisms to fight bacteria-specific viruses (bacteriophages, phages) and other invading mobile genetic elements. Among those mechanisms, the 'CRISPR-Cas' (Clustered Regularly Interspaced Short Palindromic Repeats - CRISPR-associated) system keeps record of previous infections to prevent re-infection and thus provides acquired immunity. However, phages are not defenceless against CRISPR-based bacterial immunity. Indeed, they can escape CRISPR systems by encoding one or several anti-CRISPR (Acr) proteins. Acr proteins are among the earliest proteins produced upon phage infection, as they need to quickly inhibit CRISPR-Cas system before it can destroy phage genetic material. As a result, Acrs do not perfectly protect phage from the CRISPR-Cas system, and infection often fails. However, even if the infection fails, Acr can induce a lasting inactivation of the CRISPR-Cas system. The method presented here aims to assess the lasting CRISPR-Cas inhibition in Pseudomonas aeruginosa induced by Acr proteins by:•Infecting the P. aeruginosa strain with a phage carrying an acr gene.•Making the cell electrocompetent while eliminating the phage•Transforming the cells with a plasmid targeted by the CRISPR-Cas system and a non-targeted one to measure the relative transformation efficiency of the plasmids. This method can be adapted to measure which parameters influence Acr-induced immunosuppression in different culture conditions.Biotechnology and Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 202

    Ecology and evolution of phages encoding anti-CRISPR proteins

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. CRISPR-Cas are prokaryotic defence systems that provide protection against invasion by mobile genetic elements (MGE), including bacteriophages. MGE can overcome CRISPR-Cas defences by encoding anti-CRISPR (Acr) proteins. These proteins are produced in the early stages of the infection and inhibit the CRISPR-Cas machinery to allow phage replication. While research on Acr has mainly focused on their discovery, structure and mode of action, and their applications in biotechnology, the impact of Acr on the ecology of MGE as well as on the coevolution with their bacterial hosts only begins to be unravelled. In this review, we summarise our current understanding on the distribution of anti-CRISPR genes in MGE, the ecology of phages encoding Acr, and their coevolution with bacterial defence mechanisms. We highlight the need to use more diverse and complex experimental models to better understand the impact of anti-CRISPR in MGE-host interactions.Biotechnology & Biological Sciences Research Council (BBSRC)Biotechnology & Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)European Union’s Horizon 2020IdEx Université Paris Cit

    Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defenses

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI i this recordData, Materials, and Software Availability: All study data are included in the article and/or SI Appendix.It is becoming increasingly clear that antibiotics can both positively and negatively impact the infectivity of bacteriophages (phage), but the underlying mechanisms often remain unclear. Here we demonstrate that antibiotics that target the protein translation machinery can fundamentally alter the outcome of bacteria-phage interactions by interfering with the production of phage-encoded counter-defense proteins. Specifically, using Pseudomonas aeruginosa PA14 and phage DMS3vir as a model, we show that bacteria with Clustered Regularly Interspaced Short Palindromic Repeat, CRISPR associated (CRISPR-Cas) immune systems have elevated levels of immunity against phage that encode anti-CRISPR (acr) genes when translation inhibitors are present in the environment. CRISPR-Cas are highly prevalent defense systems that enable bacteria to detect and destroy phage genomes in a sequence-specific manner. In response, many phages encode acr genes that are expressed immediately following the infection to inhibit key steps of the CRISPR-Cas immune response. Our data show that while phage-carrying acr genes can amplify efficiently on bacteria with CRISPR-Cas immune systems in the absence of antibiotics, the presence of antibiotics that act on protein translation prevents phage amplification, while protecting bacteria from lysis.Biotechnology and Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 202

    Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection

    Get PDF
    Purpose: To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. Methods: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL) thickness measurements. Results: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. Conclusions: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage. © 2013 Xu et al

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    The Presence of the Iron-Sulfur Motif Is Important for the Conformational Stability of the Antiviral Protein, Viperin

    Get PDF
    Viperin, an antiviral protein, has been shown to contain a CX3CX2C motif, which is conserved in the radical S-adenosyl-methionine (SAM) enzyme family. A triple mutant which replaces these three cysteines with alanines has been shown to have severe deficiency in antiviral activity. Since the crystal structure of Viperin is not available, we have used a combination of computational methods including multi-template homology modeling and molecular dynamics simulation to develop a low-resolution predicted structure. The results show that Viperin is an α -β protein containing iron-sulfur cluster at the center pocket. The calculations suggest that the removal of iron-sulfur cluster would lead to collapse of the protein tertiary structure. To verify these predictions, we have prepared, expressed and purified four mutant proteins. In three mutants individual cysteine residues were replaced by alanine residues while in the fourth all the cysteines were replaced by alanines. Conformational analyses using circular dichroism and steady state fluorescence spectroscopy indicate that the mutant proteins are partially unfolded, conformationally unstable and aggregation prone. The lack of conformational stability of the mutant proteins may have direct relevance to the absence of their antiviral activity

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics

    Get PDF
    Background: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.Comment: 25 pages with 6 figures and a Glossary + Supporting Information containing pseudo-codes of all algorithms used, 14 Figures, 5 Tables (with 18 module definitions, 129 different modularization methods, 13 module comparision methods) and 396 references. All algorithms can be downloaded from this web-site: http://www.linkgroup.hu/modules.ph
    • …
    corecore