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Abstract. In data streams new classes can appear over time due to
changes in the data statistical distribution. Consequently, models can
become outdated, which requires the use of incremental learning algo-
rithms capable of detecting and learning the changes over time. However,
when a single classification model is used for novelty detection, there is
a risk that its bias may not be suitable for new data distributions. A
solution could be the combination of several models into an ensemble.
Besides, because models can only be updated when labeled data arrives,
we propose two unsupervised ensemble approaches: one combining clus-
tering partitions using the same clustering technique; and other using
different clustering techniques. We compare the performance of the pro-
posed methods with well known novelty detection algorithms. The meth-
ods were tested on datasets commonly used in the novelty detection lit-
erature. The experimental results show that proposed ensembles have
competitive performance for novelty detection in data streams.
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1 Introduction

In many real world scenarios, data continuously arrives at a high rate in a non
stationary way, named data streams. As new data arrives, models previously
induced can become outdated [6], causing predictive loss. In addition, due to the
great amount of data generated, it is impossible to store it in the main memory,
requiring the elimination of previous outdated data and online processing of
incoming data [4]. In data streams, three types of changes can be found in the
literature: concept drift [6], recurring concepts [2] and novel concepts [4]. Concept
drift refers to changes in the statistical properties of the concept, such, i.e., a
change in the stochastic process generating the data [6]. Recurring concepts are
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a special type of concept drift in which concepts that appeared in the past may
recur in the future [2]. Novelty concepts are patterns that were not present during
the training of a classification model [4], which appear in the data stream.

Novelty detection is a machine learning task based on the identification of
new concepts [5]. Several state of the art approaches [12] consider novelty detec-
tion as a binary classification task, composed by normal and abnormal classes.
However, more recent approaches address novelty detection as a multi-class clas-
sification task [4]. The abnormal classes can be also named as not normal [12],
anomaly [10] or novel/new [4] classes. We follow the notation from [4]. In the
latter, normal concepts are a set of classes used to train the classification model
and novelty concepts are the new classes that emerge over time.

In this work, we propose an ensemble of clustering partitions for novelty
detection in data streams. We consider one ensemble obtained by a combina-
tion of different hyperparameter setting of the CluStream algorithm [1], referred
as Homogeneous ensemble Clustering for data Streams (HoCluS). We also con-
sider another ensemble with different clustering techniques, referred as Heteroge-
neous ensemble Clustering for data Streams (HeCluS). Each clustering technique
can independently create and update a pre-defined number of partitions as new
data arrive. This approach allows the use of clustering techniques with different
bias, in order to obtain more robust classification models. In order to compare
the performance of the different approaches, we implemented the two proposed
methods in MINAS (MultI-class learNing Algorithm for data Streams) [4], a
single classifier novelty detection algorithm for data streams. We conducted a
set of experiments using datasets commonly referred in the novelty detection
literature.

This paper is organized as follows. In Sect.2 we present related work on
novelty detection in data streams. In Sect. 3 we describe the proposed approaches
and how they are incorporated into the MINAS algorithm. Section4 presents
the experiments performed. Finally, we conclude and discuss future research in
Sect. 5.

2 Related Work

Several machine learning approaches have addressed novelty detection in data
streams. Following, we describe the principal approaches according to two
aspects: (1) number of classification models and (ii) strategy to update the clas-
sification model.

Considering the first aspect, we can divide the existing approaches in: sin-
gle classification model or ensemble of models. Most of the single classification
approaches use a kNN classification model based on a clustering approach [12].
This type of model can forget old clusters, insert new clusters and update the
existing ones. Even though it is computationally less costly to train and update
a single classification model, it may not be the most suitable to all time periods
of a stream.

In contrast, other works focus on ensemble models. Ensemble classification for
novelty detection in data streams are usually formed by combining classification
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models induced by the same algorithm [11]. In most approaches, the update
of the ensemble consists of replacing the worst accurate model by a new one,
obtained from the last labeled data chunk. However a disadvantage is that the
ensemble in some cases has to wait for a long period before the labels are known.
During this waiting period the predictive performance of the ensemble could
decrease drastically.

Considering the second, the update strategy, these strategies are: supervised
or unsupervised; according to presence/absence of labeled instances. Supervised
approaches assume that the true label of all instances will eventually be available
to update the model. Some examples of models using supervised learning are
decision trees [11] and kNN [8].

On the other hand, unsupervised learning approaches assume that the true
label will not be available. Therefore, they need to update the classification
model without external feedback [5]. In general, they use the k-means algorithm
to extract clusters to represent the current classes. As a result, they have some
limitations: find only hyper-spherical clusters, have a fixed number of clusters
and are sensitive to outliers.

3 Ensemble Clustering for Data Streams

The idea of Ensemble Clustering for Data Streams is similar to the general
concept of combining classification models to construct an ensemble [13]. For
that reason, it can be used to find the most suitable partition for a dataset. In
this work, because we are constructing an ensemble of clustering, we are dividing
the process in: the generation of a set of partitions and their combination into
an ensemble of clustering.

Formally a data stream Dy, is a potentially infinite sequence of instances
arriving in a time tr, tr € {1,...,00}. Where, each instance, X, contains d dimen-
sions denoted by X;, = (X!,..., X9) and a target class y;. A data stream can
be represented as [4,7]: Dy = {(X1,y1), (X2,92), ooy (Xtr, Yir) -

Novelty detection in data streams can be divided in two phases: the offline
and the online phase. Assuming that in the offline phase a dataset has m classes.
Then, YN = {y1,ya, ..., Yym } represents the set of Normal Classes. These class
labels and the corresponding data samples are used to build the initial classifica-
tion model. When during the online phase a novel class with label y,, 11 emerges,
a novelty detection approach needs to detect this new class (concept) as quickly
as possible and update the classification model accordingly.

3.1 The MINAS Algorithm

To test the proposed approaches, we implemented HoClus and HeCluS into the
algorithm MINAS. The algorithm MINAS, in the offline phase, has a single model
built with labeled data from the normal classes. This phase happens only once
at the initial stage. The dataset with the labeled instances is split into subsets
of data, each one containing data from one class in YN°". Then, a clustering
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algorithm is applied on each subset to create a partition for each class. A cluster
C; is defined by a centroid c;, a radius r; and a class label y. The radius of
a cluster is the Euclidean distance between the centroid and the farthest data
point in that cluster [11].

In the online phase the model calculates the Euclidean distance between
each instance and the centroids of the clusters from the normal classes. If the
smallest distance is less then the radius of the closest cluster, then the instance
gets the label from that cluster. Otherwise, the instance is labeled as Unknown
and stored in a buffer for future analysis. When the buffer is full of instances
labeled as Unknown, a clustering algorithm is applied to obtain new clusters.
A cluster is considered as concept drift if the distance between its centroid and
the centroid from the nearest cluster from the normal class is bellow a given
threshold. Otherwise, the cluster is considered a novelty. The instances that are
not similar to any cluster, the outliers, are removed. Finally, the buffer is empty
and this process is repeated every time the buffer is full.

3.2 Ensemble Clustering Applied to MINAS Algorithm

In this section we will explain how the two Ensemble Clustering for Data Streams
were embedded in the MINAS algorithm. Both offline and online phase use
two steps to build the ensemble of partitions: generation and combination. In
the generation step, a user defined number of P partitions from N clustering
techniques is generated, from the dataset Dy.. The output is an ensemble, Ly,
containing P X N clustering partitions.

Given the ensemble Ly, we need to verify which clusters, from different
partitions, are similar. For that the consensus function computes the Euclidean
distance between the centroids of each cluster from the different partitions. If
the distance between them is smaller than the sum of their radius, then those
clusters will share the same label.

In the combination step, to use the partitions as an ensemble, it is necessary
that similar clusters from different partitions have the same label. A cluster C;
with centroid ¢; is similar to a cluster Cj, if the Euclidean distance between them
is less than the sum of their radius: FuclideanDistance(c;,cr) < (rj + ).

In the offline phase, as in MINAS (See Sect. 3.1), the labeled instances are
separated by labels in subsets. For each subset an Ensemble Clustering Generator
is applied and P partitions from N clustering techniques are generated. In Fig. 1,
the figures in gray represent MINAS algorithm. The ones with dashed lines
indicate the parts that were adapted with the proposed method. Finally, the
colored figures represent the steps of the Ensemble Clustering for Data Streams.

In the online phase, Fig.2, the ensemble of clusters, blue diamond figure,
using the majority vote of partitions, decides if a new instance is classified as
normal or as Unknown. The instances classified as Unknown are stored in a buffer
for future analysis. When the buffer reaches a given size W, new partitions are
generated. This represented in Fig.2 by circles/ellipses represent clusters and
each color a label. After that, a consensus function, blue rectangle, is applied to
combine all the clusters. The latter, will maintain only the clusters more similar
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Fig. 1. Offline phase and ensemble clustering (adapted from [4])
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Fig. 2. Online phase and ensemble clustering (adapted from [4]) (Color figure online)

to other clusters from different partitions. Finally, these clusters are considered
as novelties and then they are incorporated into the ensemble.

We define Homogeneous ensemble Clustering for data Streams (HoCluS) as
an ensemble clustering obtained by the combination of P partitions from the
same algorithm. In this work we will use the algorithm for clustering in data
streams CluStream [1]. CluStream is based on the k-means algorithm. Because of
the random initialization phase of k-means, different partitions can be obtained.
Because of that, an ensemble of CluStream partitions can be more robust for
novelty detection than a single partition of CluStream.

We define a Heterogeneous Ensemble Clustering for data Streams (HeCluS)
as the combination of P partitions from NV different clustering techniques. In this
work, our HeCluS has one model induced by each one of the following clustering
algorithms for data streams: CluStream [1], DenStream [3] and ClusTree [9]. The
main motivation to use DenStream, is because it is a stream clustering algorithm
that is able to find clusters with arbitrary shape. Besides, it can also handle
outliers [3]. On the other hand, we also use the ClusTree algorithm which also
has a different bias from the other two. ClusTree builds clusters in a hierarchical
data structure and can automatically set a number of clusters with arbitrary
shape.

4 Experimental Setup and Results

We present in this section the experiments carried out for this study. We start
by describing the datasets, then 2 we detail the experiment setup and finally we
discuss the results.
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The experiments were performed with synthetic and real datasets, both com-
monly used in novelty detection studies [1,3,5,11]. The synthetic datasets are:
MOA, SynD, 1CDT, UG_2C_2D and Gear. The MOA dataset [4] has concept
drift, appearance of new classes, recurrence and disappearance of existing classes.
The clusters in this dataset are shaped as normally distributed hyper-spheres.
The SynD [11] does not contain new classes, but does include concept drift.
Finally, 1CDT, UG_2C_2D and Gear are non stationary datasets'. In these
datasets a single novelty occurs and concept drifts happen every 400 instances
in 1CDT, 1000 instances in UG_2C_2D and 2000 instances in Gear. We also use
two real datasets, Forest Cover and KDD-CUP’99 NetWork Intrusion®. The
KDD dataset was used by [1] and [3].

We assume that the instances in the training data are the normal classes and
new classes can appear during the online phase. In the offline phase, all meth-
ods are initialized with a batch of labeled data representing 10% of the data.
We represent the results for each dataset with a confusion matrix (e.g. Table 1),
which contains the percentage of: correctly classified classes (in gray), misclas-
sified classes (in white), novelties detected (in gray) and Unknown instances (in
white). The Unknown is the percentage of instances that the model was not able
to classify. The sum of each column of the matrix should be 1. However, since
we represent the average of 30 runs, the sum might not actually be 1. When-
ever an instance is labelled as Unknown, it is considered as a classification error
and counts as a false negative, which is a different approach adopted by [5]. For
this reason, a high percentage of instances labelled as Unknown, will force the
recall to be lower. This will make the comparison of the models more fair. The
F-Measure is the weighted harmonic mean of precision and recall [5].

For datasets with more than two classes we used graphics to analyse the
predictive performance of MINAS, HoCluS and HeCluS over time. We computed
the F-Measure and Unknown every 10.000 instances. The algorithms CLAM,
MINER and SAND, are not used in this analysis due difficulties to obtain the
information necessary to calculate the F-Measure over time.

4.1 Results

We compare the predictive performance of HoCluS and HeCluS with the original
MINAS and with three other supervised novelty detection methods: Miner [11],
CLAM [2] and SAND [8]. For simplicity, we use the default hyper-parameters
of the existing algorithms. In Gear dataset C1 and C2 are normal classes, both
with concept drift. In Table1 we can observe that the unsupervised method
HeCluS has the highest F-Measure. Moreover, this was the only unsupervised
method that does not misclassified C2 as a novelty. This can be due to the
fact that HeCluS is able to build models with non-spherical clusters, which can
better represent the classes of this dataset. We note that HoCluS and MINAS
misclassify some instances as novelties, however this is less evident with HoCluS

! https://www.sites.google.com/site/nonstationaryarchive/.
2 http://archive.ics.uci.edu/ml/index.php.
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Table 1. Confusion matrix for gear dataset

Supervised Unsupervised

SAND CLAM MINER | MINAS HoCluS HeCluS
Cl C2/ C1 C2| C1 C2| Cl1 C2|f Cl1 C2| C1 C2
C1 1.00 0.00(1.00 0.25|0.97 0.04| 0.82 0.03| 0.88 0.06]0.94 0.06
C2 0.00 0.00{/0.00 0.00|/0.03 0.96| 0.08 0.90| 0.06 0.86|0.06 0.94
Novelty 0.00 0.57{0.00 0.00{0.00 0.00| 0.10 0.07| 0.02 0.03|0.00 0.00
Unknown |0.00 0.43|{0.00 0.75[0.00 0.00| 0.00 0.00| 0.04 0.03|0.02 0.03
F-Measure 0.50 0.80 0.98 0.92 0.93 0.97

than with MINAS. In terms of the supervised methods, MINER has the best
F-Measure with few misclassification. However, SAND and CLAM misclassify
the majority data from C2 as Unknown or as C1. SAND classifies the drifts from
C2 as novelties and CLAM does not learn from the Unknown.

In the SynD dataset C1 and C2 are the normal classes and both have con-
cept drift. We observe, Table 2, that the methods show a similar behavior on
the Gear dataset. In the group of unsupervised methods, HeCluS and HoCluS
obtained a slightly better performance than MINAS. Considering the supervised
methods, SAND, CLAM and MINER learn part of the concept drifts. SAND has
F-Measure 0.77, however it has the highest percentage of Unknown. CLAM does
not considered any instance as Unknown, but has more classification errors.
MINER had the highest score and does not classify any instance as Unknown.

Table 2. Confusion matrix for Synd dataset

Supervised Unsupervised

SAND CLAM MINER | MINAS HoCluS HeCluS
Cl C2| C1 C2f C1 C2| C1 C2f C1 C2f C1 C2
Cc1 0.64 0.00[0.50 0.45| 0.88 0.18]0.63 0.34| 0.66 0.31| 0.69 0.34
C 2 0.00 0.60(0.50 0.55| 0.12 0.82/0.37 0.66| 0.30 0.70| 0.32 0.65
Novelty 0.00 0.00{0.00 0.00| 0.00 0.00{0.00 0.00| 0.00 0.00| 0.00 0.00
Unknown |0.36 0.40{0.00 0.00| 0.00 0.00{0.01 0.01| 0.01 0.01| 0.00 0.00
F-Measure| 0.77 0.69 0.92 0.76 0.78 0.79

The 1CDT dataset, Table 3, has a normal class (C1) and a new class (C2)
with concept drift. With this dataset we can evaluate the performance of the
models with regard to novel concept detection in the online phase. We note
that MINAS, HoCluS and HeCluS even during the online phase, they are not
informed of the true class of the novelties detected. Because of that, even though
they detect C2 as a novel class, their predictions are only represented as nowvelty.
All models correctly classify most data from C1. On the other hand, in terms of
the novel class, C2, they have different predictive performance. In terms of unsu-
pervised approaches, HeCluS does not distinguish very well the normal concept,
C1, from the novel concept, C2. On the other hand, HoCluS and MINAS, never
misclassified C1 as C2. However, both have the highest percentage of Unknown.
In terms of supervised approaches, SAND presents the lowest F-Measure because
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misclassifies most data from C2 as C1. SAND gives a confidence score for each
model depending on their previous performance. Because of that the models rep-
resenting the normal class have higher score than the novelty. This might explain
the high percentage of misclassification of C2. The methods CLAM and MINER
show high performance for C2, combining the percentage of correct classification
and nowvelty.

Table 3. Confusion matrix for 1CDT dataset

Supervised Unsupervised

SAND CLAM MINER | MINAS HoCluS HeCluS
Cl C2] C1 C2] C1 C2] C1 C2] C1 C2|[ C1 C2
C1 1.00 0.84{1.00 0.00[{1.00 0.00{0.94 0.00[{0.94 0.00| 1.00 0.20
C2 0.00 0.03|0.00 0.73]/0.00 0.71/0.00 0.00{0.09 0.00| 0.00 0.00
Novelty 0.00 0.11{0.00 0.27{0.00 0.27(0.04 0.87[0.00 0.87| 0.00 0.75
Unknown [0.00 0.02]/0.00 0.00]{0.00 0.02{0.06 0.12]0.00 0.13| 0.00 0.06
F-Measure 0.62 0.92 0.99 0.95 0.95 0.93

In the Forest Cover dataset, we have 3 normal classes and 5 novel classes.
We can observe in Fig. 3(a) that HeCluS has the highest F-Measure over time
and it is more stable. In terms of Unknown data, Fig. 3(b), HoCluS and MINAS
have higher percentage of data classified as Unknown than HeCluS, specially
from time 20 to 40. In terms of F-Measure, SAND has performance of 0.32 due
confusion between the normal and novel classes. Possibly this happens because
of the confidence factor, a hyperparamenter, that tends to privilege majority
classes, which is the case for the classes from the normal class. CLAM had per-
formance of 0.72 because it was able to detect most of the novel classes. Finally,
MINER 0.59 detected a high number of class, but misclassify the novelties as
the normal classes.
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Fig. 3. F-measure and Unknown for forest cover dataset

In the KDD dataset we consider 18 normal classes and 5 nowvel classes. All
methods start in time 0 with a low F-Measure, Fig.4(a). During the time 15
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to 30, HeCluS has better performance and is more stable, but after that period
shows great instability. MINAS and HoCluS have less instability, but with low
performance and periods with not correctly classify classes. HoCluS and MINAS
have higher Unknown data, Fig. 4(b). However, the low F-Measure and Unknown
show that MINAS and HoCluS misclassify the classes. In terms of the final F-
Measure, SAND has performance of 0.27, CLAM 0.32 and MINER 0.30.
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Fig. 4. F-measure and unknown for KDD99 dataset

The MOA dataset has 2 normal classes and 2 novel classes. The normal
classes have concept drifts from time 0 to 90 and from time 30 to 55 they overlap.
The first new class emerge at time 35 and second new class emerge after time
75. In Fig. 5(a), we can see that HeCluS is better and more stable than HoCluS
and MINAS. In terms of performance, HoCluS is not different then MINAS.
However, observing the peaks in Fig. 5(b), we can see that HeCluS updated less
times that HoCluS and MINAS. In that case, MINAS needed to update more
times than HoCluS. In terms of F-Measure, SAND had performance of 0.88,
CLAM 0.44 and MINER 0.90.
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Fig. 5. F-measure and Unknown for MOA dataset

The UG_2C_2D dataset has a normal class and a new class, both with con-
cept drift and overlap. Analysing the unsupervised methods in Table 4, HeCluS
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classifies all data as C1 and does not learn the new class. HoCluS has slightly
higher F-Measure than MINAS, both methods misclassify great percentage of
C2 and C1, however they learn the new class. For the supervised methods, SAND
and MINER also misclassify C2 as C1. MINER misclassify more C1 as C2 than
the others methods. CLAM presents the best performance because does not
misclassifies C2 as C1.

Table 4. Confusion matrix for UG_2C_2D dataset

Supervised Unsupervised

SAND CLAM MINER | MINAS HoCluS HeCluS
Cl C2] C1 C2] C1 C2] C1 C2] C1 C2| C1 C2
C1 0.71 0.50| 1.00 0.02| 0.50 0.58| 0.42 0.45| 0.45 0.50| 1.00 1.00
C2 0.10 0.07| 0.00 0.70| 0.46 0.37| 0.00 0.00| 0.00 0.00| 0.00 0.00
Novelty 0.28 0.44| 0.00 0.00| 0.01 0.01] 0.51 0.46| 0.50 0.43] 0.00 0.00
Unknown | 0.01 0.06| 0.00 0.28]| 0.03 0.04| 0.07 0.09( 0.05 0.07| 0.00 0.00
F-Measure 0.72 0.91 0.60 0.43 0.45 0.50

5 Conclusions

In this work we proposed the methods HeCluS and HoCluS for detection of
novelties and concept drift in data streams. These ensembles combine several
partitions from one or more clustering techniques. This allows the use of clus-
tering techniques with different bias at the same time, in order to obtain more
robust classification models.

In the experiment with the datasets with only concept drift, we demon-
strated that HoCluS and HeCluS are competitive with state of the art super-
vised methods. Observing the performance of HoCluS and HeCluS over time, we
conclude that HeCluS has lower percentage of Unknown instances. This shows
that HeCluS takes more risks in the classification decision than HoCluS. Because
of that HeCluS was better in most datasets. On the other hand, this behavior
also gives the model less chances to be updated.

The use of ensembles with different clustering techniques is a promising strat-
egy, because the inductive bias of each classification model can be more suitable
for a given data stream or only for during certain periods in the same data
stream. The experiments showed that during the online phase, the performance
of all tested algorithms were affected by the changes in the data distribution.
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