608 research outputs found
Magnetic field control of the spin Seebeck effect
The origin of the suppression of the longitudinal spin Seebeck effect by
applied magnetic fields is studied. We perform numerical simulations of the
stochastic Landau-Lifshitz-Gilbert equation of motion for an atomistic spin
model and calculate the magnon accumulation in linear temperature gradients for
different strengths of applied magnetic fields and different length scales of
the temperature gradient. We observe a decrease of the magnon accumulation with
increasing magnetic field and we reveal that the origin of this effect is a
field dependent change of the frequency distribution of the propagating
magnons. With increasing field the magnonic spin currents are reduced due to a
suppression of parts of the frequency spectrum. By comparison with measurements
of the magnetic field dependent longitudinal spin Seebeck effect in YIG thin
films with various thicknesses, we find that our model describes the
experimental data very well, demonstrating the importance of this effect for
experimental systems
Magnetic tunnel junction magnetic field sensor design tool
A spreadsheet-based magnetic tunnel junction (MTJ) sensor design tool is presented in this paper. The system is developed using Excel and Visual Basic Application. It allows users to optimize the various parameters of the sensor design with the goal of SQUID-like sensitivity. Users can input parameters of the design including magnetic properties, junction areas, and free layers thicknesses. The design tool will then calculate and display automatically various noise sources including Johnson noise, shot noise, 1/f noise, and thermal magnetic noise that must be considered when building MTJ magnetic field sensors. Graphs predicting the sensitivities, operating current and power of the finished sensors are shown and fine tuning of each design parameter is allowed using the scrollbars provided. Using this design tool, effects of changes made to any design parameter can be clearly observed and detailed noise analysis can be studied without manually repeating complex calculations. ©2010 IEEE.published_or_final_versionThe 3rd International Nanoelectronics Conference (INEC 2010), Hong Kong, China, 3-8 January 2010. In Proceedings of the 3rd INEC, 2010, p. 1149-115
Logarithmic rate dependence in deforming granular materials
Rate-independence for stresses within a granular material is a basic tenet of
many models for slow dense granular flows. By contrast, logarithmic rate
dependence of stresses is found in solid-on-solid friction, in geological
settings, and elsewhere. In this work, we show that logarithmic rate-dependence
occurs in granular materials for plastic (irreversible) deformations that occur
during shearing but not for elastic (reversible) deformations, such as those
that occur under moderate repetitive compression. Increasing the shearing rate,
\Omega, leads to an increase in the stress and the stress fluctuations that at
least qualitatively resemble what occurs due to an increase in the density.
Increases in \Omega also lead to qualitative changes in the distributions of
stress build-up and relaxation events. If shearing is stopped at t=0, stress
relaxations occur with \sigma(t)/ \sigma(t=0) \simeq A \log(t/t_0). This
collective relaxation of the stress network over logarithmically long times
provides a mechanism for rate-dependent strengthening.Comment: 4 pages, 5 figures. RevTeX
Length Scale of the Spin Seebeck Effect
We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299)National Science Foundation (U.S.) (Award ECCS1231392
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
A novel isolator-based system promotes viability of human embryos during laboratory processing
In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations
Targeted Deletion of p73 in Mice Reveals Its Role in T Cell Development and Lymphomagenesis
Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia
Lizards Cooperatively Tunnel to Construct a Long-Term Home for Family Members
Constructing a home to protect offspring while they mature is common in many vertebrate groups, but has not previously been reported in lizards. Here we provide the first example of a lizard that constructs a long-term home for family members, and a rare case of lizards behaving cooperatively. The great desert skink, Liopholis kintorei from Central Australia, constructs an elaborate multi-tunnelled burrow that can be continuously occupied for up to 7 years. Multiple generations participate in construction and maintenance of burrows. Parental assignments based on DNA analysis show that immature individuals within the same burrow were mostly full siblings, even when several age cohorts were present. Parents were always captured at burrows containing their offspring, and females were only detected breeding with the same male both within- and across seasons. Consequently, the individual investments made to construct or maintain a burrow system benefit their own offspring, or siblings, over several breeding seasons
Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma
Background: Preclinical studies suggest that chemotherapy may enhance the immune response against pancreatic cancer. Methods: The levels of granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) and the associated inflammatory marker C-reactive protein (CRP) were assessed in 38 patients receiving gemcitabine and capecitabine combination chemotherapy for advanced pancreatic cancer within the TeloVac trial. Apoptosis (M30) and total immune response (delayed-type hypersensitivity and/or T-cell response) were also assessed and levels of apoptosis induction correlated with immune response. The telomerase GV1001 vaccine was given either sequentially (n=18) or concomitantly (n=24) with the combination chemotherapy. Results: There were no differences between baseline and post-treatment levels of CRP (P=0.19), IL-6 (P=0.19) and GM-CSF (P=0.71). There was a positive correlation between post-chemotherapy CRP and IL-6 levels (r=0.45, P=0.005) and between CRP with carbohydrate antigen-19-9 (CA19-9) levels at baseline (r=0.45, P=0.015) and post treatment (r=0.40, P=0.015). The change in CRP and IL-6 levels was positively correlated (r=0.40, P=0.012). Hazard ratios (95% CI) for baseline CA19-9 (1.30 (1.07–1.59), P=0.009) and CRP (1.55 (1.00–2.39), P=0.049) levels were each independently predictive of survival. The M30 mean matched differences between pre- and post-chemotherapy showed evidence of apoptosis in both the sequential (P=0.058) and concurrent (P=0.0018) chemoimmunotherapy arms. Respectively, 5 of 10 and 9 of 20 patients had a positive immune response but there was no association with apoptosis. Conclusions: Combination gemcitabine and capecitabine chemotherapy did not affect circulating levels of GM-CSF, IL-6 and CRP. Chemotherapy-induced apoptosis was not associated with the immunogenicity induced by the GV1001 vaccine in advanced pancreatic cancer
- …