24 research outputs found
The SU(2) black hole entropy revisited
We study the state-counting problem that arises in the SU(2) black hole entropy calculation in loop quantum gravity. More precisely, we compute the leading term and the logarithmic correction of both the spherically symmetric and the distorted SU( 2) black holes. Contrary to what has been done in previous works, we have to take into account "quantum corrections" in our framework in the sense that the level k of the Chern-Simons theory which describes the black hole is finite and not sent to infinity. Therefore, the new results presented here allow for the computation of the entropy in models where the quantum group corrections are important
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
The Spin Foam Approach to Quantum Gravity
This article reviews the present status of the spin foam approach to the
quantization of gravity. Special attention is payed to the pedagogical
presentation of the recently introduced new models for four dimensional quantum
gravity. The models are motivated by a suitable implementation of the path
integral quantization of the Plebanski formulation of gravity on a simplicial
regularization. The article also includes a self-contained treatment of the 2+1
gravity. The simple nature of the latter provides the basis and a perspective
for the analysis of both conceptual and technical issues that remain open in
four dimensions.Comment: To appear in Living Reviews in Relativit
Unitary and Non-Unitary Matrices as a Source of Different Bases of Operators Acting on Hilbert Spaces
Columns of d^2 x N matrices are shown to create different sets of N operators
acting on -dimensional Hilbert space. This construction corresponds to a
formalism of the star-product of operator symbols. The known bases are shown to
be partial cases of generic formulas derived by using d^2 x N matrices as a
source for constructing arbitrary bases. The known examples of the SIC-POVM,
MUBs, and the phase-space description of qubit states are considered from the
viewpoint of the developed unified approach. Star-product schemes are
classified with respect to associated d^2 x N matrices. In particular, unitary
matrices correspond to self-dual schemes. Such self-dual star-product schemes
are shown to be determined by dequantizers which do not form POVM.Comment: 12 pages, 1 figure, 1 table, to appear in Journal of Russian Laser
Researc
Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry
We deform the action and the supersymmetry transformations of the d = 10 and d = 4 Maxwell supermultiplets so that at each order of the deformation the theory has 16 Maxwell multiplet deformed supersymmetries as well as 16 Volkov-Akulov type non-linear supersymmetries. The result agrees with the expansion in the string tension of the explicit action of the Dirac-Born-Infeld model and its supersymmetries, extracted from D9 and D3 superbranes, respectively. The half-maximal Dirac-Born-Infeld models with 8 Maxwell supermultiplet deformed supersymmetries and 8 Volkov-Akulov type supersymmetries are described by a new class of d = 6 vector branes related to chiral (2,0) supergravity, which we denote as 'Vp-branes'. We use a space-filling V5 superbrane for the d = 6 model and a V3 superbrane for the d = 4 half-maximal Dirac-Born-Infeld (DBI) models. In this way we present a completion to all orders of the deformation of the Maxwell supermultiplets with maximal 16+16 supersymmetries in d = 10 and 4, and half-maximal 8+8 supersymmetries in d = 6 and 4.</p
Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe
In three spacetime dimensions, general relativity drastically simplifies,
becoming a ``topological'' theory with no propagating local degrees of freedom.
Nevertheless, many of the difficult conceptual problems of quantizing gravity
are still present. In this review, I summarize the rather large body of work
that has gone towards quantizing (2+1)-dimensional vacuum gravity in the
setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms,
additions, missing references welcome; v2: minor changes, added reference
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
Modern tests of Lorentz invariance
Motivated by ideas about quantum gravity, a tremendous amount of effort over
the past decade has gone into testing Lorentz invariance in various regimes.
This review summarizes both the theoretical frameworks for tests of Lorentz
invariance and experimental advances that have made new high precision tests
possible. The current constraints on Lorentz violating effects from both
terrestrial experiments and astrophysical observations are presented.Comment: Modified and expanded discussions of various points. Numerous
references added. Version matches that accepted by Living Reviews in
Relativit