12 research outputs found

    Information Routing Driven by Background Chatter in a Signaling Network

    Get PDF
    Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant. When information is received by a cell signaling network via one specific input, the existence of other stimuli can provide a background activity –or chatter– that may affect signal transmission through the network and, therefore, the response of the cell. Here we study the modulation of information processing by chatter in the signaling network of a human cell, specifically, in a Boolean model of the signal transduction network of a fibroblast. We observe that the level of external chatter shapes the response of the system to information carrying signals in a nontrivial manner, modulates the activity levels of the network outputs, and effectively determines the paths of information flow. Our results show that the interactions and node dynamics, far from being random, confer versatility to the signaling network and allow transitions between different information-processing scenarios

    Ranking One Million Simple Paths in Road Networks

    No full text

    A Lower Bound of the Choquet Integral Integrated Within Martins' Algorithm

    No full text
    The problem investigated in this work concerns the integration of a decision-maker preference model within an exact algorithm in multiobjective combinatorial optimization. Rather than computing the complete set of efficient solutions and choosing a solution afterwards, our aim is to efficiently compute one solution satisfying the decision maker preferences elicited a priori. The preference model is based on the Choquet integral. The reference optimization problem is the multiobjective shortest path problem, where Martins' algorithm is used. A lower bound of the Choquet integral is proposed that aims to prune useless partial paths at the labeling stage of the algorithm. Various procedures exploiting the proposed bound are presented and evaluated on a collection of benchmarks. Numerical experiments show significant improvements compared to the exhaustive enumeration of solutions
    corecore