1,832 research outputs found

    Blood lipid profiles and peripheral blood mononuclear cell cholesterol metabolism gene expression in patients with and without methotrexate treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methotrexate (MTX) is the most commonly prescribed disease-modifying antirheumatic drug (DMARD) in rheumatoid arthritis. ATP-binding cassette transporter-A1 (ABCA1) and 27-Hydroxylase (HY27) are known antiatherogenic proteins that promote cellular cholesterol efflux. In THP-1 macrophages, MTX can promote the reversal of cholesterol transport, limit foam cell formation and also reverse COX-2 inhibitor-mediated downregulation of ABCA1. Despite its antiatherogenic potential <it>in vitro</it>, the impact of clinical use of low-dose MTX on cholesterol metabolism in humans is unknown. Objective of the study was to examine whether clinical MTX use is associated with altered blood lipids and/or <it>ABCA1/HY27 </it>expressions.</p> <p>Methods</p> <p>In all, 100 rheumatoid arthritis subjects were recruited from a medical center in central Taiwan. Plasma lipid profiles and peripheral blood mononuclear cell <it>HY27 </it>and <it>ABCA1 </it>expressions were compared between subjects taking MTX (MTX+) and other disease-modifying antirheumatic drugs (DMARDs) (MTX-). Dietary intake was assessed by a registered dietician.</p> <p>Results</p> <p>Though no difference observed in the blood lipids between MTX+ and MTX- subjects, the expressions of <it>ABCA1 </it>and <it>HY27 </it>were significantly elevated in MTX+ subjects (n = 67) compared to MTX- subjects (n = 32, p < 0.05). ABCA expression correlated with MTX doses (r = 0.205, p = 0.042), and MTX+ subjects are more likely to have increased <it>HY27 </it>compared to MTX- subjects (OR = 2.5, p = 0.038). Prevalence of dyslipidemia and overweight, and dietary fat/cholesterol intake were lower than that of the age-matched population. Although no differences were observed in the blood lipids, the potential impacts of MTX on cholesterol metabolism should not be overlooked and the atheroprotective effects from MTX induced <it>HY27 </it>and <it>ABCA1 </it>expressions may still be present in those persons with pre-existing dyslipidemia.</p> <p>Conclusions</p> <p>We demonstrated novel findings on the increased gene expressions of atheroprotective protein <it>HY27 </it>and <it>ABCA1 </it>in human peripheral blood mononuclear cells (PBMCs) with clinical use of low-dose MTX. Whether MTX induced <it>HY27 </it>and <it>ABCA1 </it>expressions can protect against cardiovascular disease in patients with chronic inflammation through the facilitation of cholesterol export remains to be established. Further studies on the impacts of low-dose MTX on hypercholesterolemic patients are underway.</p

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    Role of cardiac mitofusins in cardiac conduction following simulated ischemia–reperfusion

    Get PDF
    Mitochondrial dysfunction induced by acute cardiac ischemia–reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis

    STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage

    Get PDF
    STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al

    Wall roughness induces asymptotic ultimate turbulence

    Get PDF
    Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers

    Angiomyolipoma Have Common Mutations in TSC2 but No Other Common Genetic Events

    Get PDF
    Renal angiomyolipoma are part of the PEComa family of neoplasms, and occur both in association with Tuberous Sclerosis Complex (TSC) and independent of that disorder. Previous studies on the molecular genetic alterations that occur in angiomyolipoma are very limited. We evaluated 9 angiomyolipoma for which frozen tissue was available from a consecutive surgical series. Seven of 8 samples subjected to RT-PCR-cDNA sequencing showed mutations in TSC2; none showed mutations in TSC1 or RHEB. Six of the seven mutations were deletions. We searched for 983 activating and inactivating mutations in 115 genes, and found none in these tumors. Similarly analysis for genomic regions of loss or gain, assessed by Affymetrix SNP6.0 analysis, showed no abnormalities. Loss of heterozygosity in the TSC2 region was commonly seen, except in patients with low frequency TSC2 mutations. We conclude that sporadic renal angiomyolipoma usually have mutations in TSC2, but not TSC1 or RHEB, and have no other common genomic events, among those we searched for. However, chromosomal translocations and gene fusion events were not assessed here. TSC2 inactivation by mutation is a consistent and likely necessary genetic event in the pathogenesis of most angiomyolipoma

    Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond

    Get PDF
    We review recent developments in the physics of ultracold atomic and molecular gases in optical lattices. Such systems are nearly perfect realisations of various kinds of Hubbard models, and as such may very well serve to mimic condensed matter phenomena. We show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics. After a short presentation of the models and the methods of treatment of such systems, we discuss in detail, which challenges of condensed matter physics can be addressed with (i) disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii) spinor lattice gases, (iv) lattice gases in "artificial" magnetic fields, and, last but not least, (v) quantum information processing in lattice gases. For completeness, also some recent progress related to the above topics with trapped cold gases will be discussed.Comment: Review article. v2: published version, 135 pages, 34 figure

    Constructing Biological Pathways by a Two-Step Counting Approach

    Get PDF
    Networks are widely used in biology to represent the relationships between genes and gene functions. In Boolean biological models, it is mainly assumed that there are two states to represent a gene: on-state and off-state. It is typically assumed that the relationship between two genes can be characterized by two kinds of pairwise relationships: similarity and prerequisite. Many approaches have been proposed in the literature to reconstruct biological relationships. In this article, we propose a two-step method to reconstruct the biological pathway when the binary array data have measurement error. For a pair of genes in a sample, the first step of this approach is to assign counting numbers for every relationship and select the relationship with counting number greater than a threshold. The second step is to calculate the asymptotic p-values for hypotheses of possible relationships and select relationships with a large p-value. This new method has the advantages of easy calculation for the counting numbers and simple closed forms for the p-value. The simulation study and real data example show that the two-step counting method can accurately reconstruct the biological pathway and outperform the existing methods. Compared with the other existing methods, this two-step method can provide a more accurate and efficient alternative approach for reconstructing the biological network

    MUC1 alters oncogenic events and transcription in human breast cancer cells

    Get PDF
    INTRODUCTION: MUC1 is an oncoprotein whose overexpression correlates with aggressiveness of tumors and poor survival of cancer patients. Many of the oncogenic effects of MUC1 are believed to occur through interaction of its cytoplasmic tail with signaling molecules. As expected for a protein with oncogenic functions, MUC1 is linked to regulation of proliferation, apoptosis, invasion, and transcription. METHODS: To clarify the role of MUC1 in cancer, we transfected two breast cancer cell lines (MDA-MB-468 and BT-20) with small interfering (si)RNA directed against MUC1 and analyzed transcriptional responses and oncogenic events (proliferation, apoptosis and invasion). RESULTS: Transcription of several genes was altered after transfection of MUC1 siRNA, including decreased MAP2K1 (MEK1), JUN, PDGFA, CDC25A, VEGF and ITGAV (integrin α(v)), and increased TNF, RAF1, and MMP2. Additional changes were seen at the protein level, such as increased expression of c-Myc, heightened phosphorylation of AKT, and decreased activation of MEK1/2 and ERK1/2. These were correlated with cellular events, as MUC1 siRNA in the MDA-MB-468 line decreased proliferation and invasion, and increased stress-induced apoptosis. Intriguingly, BT-20 cells displayed similar levels of apoptosis regardless of siRNA, and actually increased proliferation after MUC1 siRNA. CONCLUSION: These results further the growing knowledge of the role of MUC1 in transcription, and suggest that the regulation of MUC1 in breast cancer may be more complex than previously appreciated. The differences between these two cell lines emphasize the importance of understanding the context of cell-specific signaling events when analyzing the oncogenic functions of MUC1, and caution against generalizing the results of individual cell lines without adequate confirmation in intact biological systems

    Release of PLGA–encapsulated dexamethasone from microsphere loaded porous surfaces

    Get PDF
    The aim of the present study was to investigate the morphology and function of a drug eluting metallic porous surface produced by the immobilization of poly lactide-co-glycolide microspheres bearing dexamethasone onto plasma electrolytically oxidized Ti–6Al–7Nb medical alloy. Spheres of 20 μm diameter were produced by an oil-in-water emulsion/solvent evaporation method and thermally immobilized onto titanium discs. The scanning electron microscopy investigations revealed that the size distribution and morphology of the attached spheres had not changed significantly. The drug release profiles following degradation in phosphate buffered saline for 1000 h showed that, upon immobilisation, the spheres maintained a sustained release, with a triphasic profile similar to the non-attached system. The only significant change was an increased release rate during the first 100 h. This difference was attributed to the effect of thermal attachment of the spheres to the surface
    corecore