21 research outputs found

    Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress and impaired antioxidant system have been proposed as a potential factors involved in the pathophysiology of diverse disease states, including carcinogenesis. In this study, we explored the lipid peroxidation levels and antioxidant enzyme activities in women diagnosed with different forms of gynecological diseases in order to evaluate the antioxidant status in endometrium of such patients.</p> <p>Methods</p> <p>Endometrial tissues of gynecological patients with different diagnoses were collected and subjected to assays for superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and lipid hydroperoxides.</p> <p>Results</p> <p>Superoxide dismutase activity was significantly decreased (50% in average) in hyperplastic and adenocarcinoma patients. Activities of both glutathione peroxidase and glutathione reductase were increased 60% and 100% on average, in hyperplastic patients, while in adenocarcinoma patients only glutathione reductase activity was elevated 100%. Catalase activity was significantly decreased in adenocarcinoma patients (47%). Lipid hydroperoxides level was negatively correlated to superoxide dismutase and catalase activities, and positively correlated to glutathione peroxidase and glutathione reductase activities.</p> <p>Conclusions</p> <p>This study provided the first comparison of antioxidant status and lipid peroxidation in endometrial tissues of patients with polyps, myoma, hyperplasia and adenocarcinoma. The results showed that patients with premalignant (hyperplastic) and malignant (adenocarcinoma) lesions had enhanced lipid peroxidation and altered uterine antioxidant enzyme activities than patients with benign uterine diseases, polyps and myoma, although the extent of disturbance varied with the diagnosis. Further investigation is needed to clarify the mechanisms responsible for the observed alterations and whether lipid hydroperoxide levels and antioxidant enzyme activities in uterus of gynecological patients might be used as additional parameter in clinical evaluation of gynecological disorders.</p

    Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans

    Get PDF
    BACKGROUND: Monascus-fermented products are mentioned in an ancient Chinese pharmacopoeia of medicinal food and herbs. Monascus-fermented products offer valuable therapeutic benefits and have been extensively used in East Asia for several centuries. Several biological activities of Monascus-fermented products were recently described, and the extract of Monascus-fermented products showed strong antioxidant activity of scavenging DPPH radicals. To evaluate whether Monascus-fermented dioscorea products have potential as nutritional supplements, Monascus-fermented dioscorea's modulation of oxidative-stress resistance and associated regulatory mechanisms in Caenorhabditis elegans were investigated. PRINCIPAL FINDINGS: We examined oxidative stress resistance of the ethanol extract of red mold dioscorea (RMDE) in C. elegans, and found that RMDE-treated wild-type C. elegans showed an increased survival during juglone-induced oxidative stress compared to untreated controls, whereas the antioxidant phenotype was absent from a daf-16 mutant. In addition, the RMDE reduced the level of intracellular reactive oxygen species in C. elegans. Finally, the RMDE affected the subcellular distribution of the FOXO transcription factor, DAF-16, in C. elegans and induced the expression of the sod-3 antioxidative gene. CONCLUSIONS: These findings suggest that the RMDE acts as an antioxidative stress agent and thus may have potential as a nutritional supplement. Further studies in C. elegans suggest that the antioxidant effect of RMDE is mediated via regulation of the DAF-16/FOXO-dependent pathway

    Lipophilic aroylhydrazone chelator HNTMB and its multiple effects on ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metal chelators have gained much attention as potential anti-cancer agents. However, the effects of chelators are often linked solely to their capacity to bind iron while the potential complexation of other trace metals has not been fully investigated. In present study, we evaluated the effects of various lipophilic aroylhydrazone chelators (AHC), including novel compound HNTMB, on various ovarian cancer cell lines (SKOV-3, OVCAR-3, NUTU-19).</p> <p>Methods</p> <p>Cell viability was analyzed via MTS cytotoxicity assays and NCI60 cancer cell growth screens. Apoptotic events were monitored via Western Blot analysis, fluorescence microscopy and TUNEL assay. FACS analysis was carried out to study Cell Cycle regulation and detection of intracellular Reactive Oxygen Species (ROS)</p> <p>Results</p> <p>HNTMB displayed high cytotoxicity (IC50 200-400 nM) compared to previously developed AHC (oVtBBH, HNtBBH, StBBH/206, HNTh2H/315, HNI/311; IC50 0.8-6 μM) or cancer drug Deferoxamine, a hexadentate iron-chelator (IC50 12-25 μM). In a NCI60 cancer cell line screen HNTMB exhibited growth inhibitory effects with remarkable differences in specificity depending on the cell line studied (GI50 10 nM-2.4 μM). In SKOV-3 ovarian cancer cells HNTMB treatment led to chromatin fragmentation and activation of the extrinsic and intrinsic pathways of apoptosis with specific down-regulation of Bcl-2. HNTMB caused delayed cell cycle progression of SKOV-3 through G2/M phase arrest. HNTMB can chelate iron and copper of different oxidation states. Complexation with copper lead to high cytotoxicity via generation of reactive oxygen species (ROS) while treatment with iron complexes of the drug caused neither cytotoxicity nor increased ROS levels.</p> <p>Conclusions</p> <p>The present report suggests that both, non-complexed HNTMB as a chelator of intracellular trace-metals as well as a cytotoxic HNTMB/copper complex may be developed as potential therapeutic drugs in the treatment of ovarian and other solid tumors.</p

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases

    Anhang

    No full text

    Chemosensitisation by manganese superoxide dismutase inhibition is caspase-9 dependent and involves extracellular signal-regulated kinase 1/2

    Get PDF
    Chemoresistance and therapeutic selectivity are major obstacles to successful chemotherapy of ovarian cancer. Manganese superoxide disumutase (MnSOD) is an important antioxidant enzyme responsible for the elimination of superoxide radicals. We reported here that MnSOD was significantly elevated in ovarian cancer cells and its overexpression was one of the mechanisms that increased resistance to apoptosis in cancer cells. Knockdown of MnSOD by small-interfering RNA (siRNA) led to an increase in superoxide generation and sensitisation of ovarian cancer cells to the two front-line anti-cancer agents doxorubicin and paclitaxel whose action involved free-radical generation. This synergistic effect was not observed in non-transformed ovarian surface epithelial cells. Furthermore, our results revealed that this combination at the cellular level augmented activation of caspase-3 and caspase-9, but not caspase-8, suggesting involvement of an intrinsic apoptotic pathway. Evaluation of signalling pathways showed that MnSOD siRNA enhanced doxorubicin- and paclitaxel-induced phosphorylation of extracellular signal-regulated kinase 1/2. Akt activation was not affected. These results identify a novel chemoresistance mechanism in ovarian cancer, and show that combination of drugs capable of suppressing MnSOD with conventional chemotherapeutic agents may provide a novel strategy with a superior therapeutic index and advantage for the treatment of refractory ovarian cancer. © 2008 Cancer Research.link_to_subscribed_fulltex
    corecore