47 research outputs found

    Mesorhizobium septentrionale sp nov and Mesorhizobium temperatum sp nov., isolated from Astragalus adsurgens growing in the northern regions of China

    Get PDF
    Ninety-five rhizobial strains isolated from Astragalus adsurgens growing in the northern regions of China were classified into three main groups, candidate species 1, 11 and 111, based on a polyphasic approach. Comparative analysis of full-length 16S rRNA gene sequences of representative strains showed that candidate species I and 11 were Mesorhizobium, while candidate species 111, which consisted of non-nodulating strains, was closely related to Agrobacterium tumefaciens. The phylogenetic relationships of the three candidate species and some related strains were also confirmed by the sequencing of glnA genes, which were used as an alternative chromosomal marker. The DNA-DNA relatedness was between 11.3 and 47-1 % among representative strains of candidate species I and 11 and the type strains of defined Mesorhizobium species. Candidate III had DNA relatedness of between 4(.)3 and 25(.)2 % with type strains of Agrobacterium tumefaciens and Agrobacterium rubi. Two novel species are proposed to accommodate candidate species I and 11, Mesorhizobium septentrionale sp. nov. (type strain, SIDW014(T) =CCBAU 11014(T) = HAMBI 2582(T)) and Mesorhizobium temperatum sp. nov. (type strain, SIDW018(T) = CCBAU 11018(T) =HAMBI 2583(T)), respectively. At least two distinct nodA sequences were identified among the strains. The numerically dominant nodA sequence type was most similar to that from the Mesorhizobium tianshanense type strain and was identified in strains belonging to the two novel species as well as other, as yet, undefined genome types. Host range studies indicate that the different nodA sequences correlate with different host ranges. Further comparative studies with the defined Agrobacterium species are needed to clarify the taxonomic identity of candidate species 111

    Investigation into air distribution systems and thermal environment control in chilled food processing facilities

    Get PDF
    Air flow distribution in chilled food facilities plays a critical role not only in maintaining the required food products temperature but also because of its impact on the facility energy consumption and CO2 emissions. This paper presents an investigation of the thermal environment in existing food manufacturing facilities, with different air distribution systems including supply/return diffusers and fabric ducts, by means of both in-situ measurements and 3D CFD simulations. Measurements and CFD simulations showed that the fabric duct provides a better environment in the processing area in terms of even and low air flow if compared to that with the diffusers. Moreover, temperature stratification was identified as a key factor to be improved to reduce the energy use for the space cooling. Further modelling proved that air temperature stratification improves by relocating the fabric ducts at a medium level. This resulted in a temperature gradient increase up to 4.1 °C in the unoccupied zone

    Synthesis, characterization and free radical scavenging properties of rosmarinic acid fatty esters

    No full text
    Contacts: [email protected], [email protected] audienceThe hydrophobation of rosmarinic acid with saturated aliphatic primary alcohols of various chain lengths (methanol to eicosanol) was achieved via an acid-catalyzed esterification in the presence of a highly acidic sulfonic resin. The resulting alkyl rosmarinates were isolated, characterized and their global free radical scavenging activity was determined by the 2,2-diphenyl-1-picrylhydrazyl method in the stationary state. Only the dodecyl ester showed a stronger activity than rosmarinic aci
    corecore