108 research outputs found

    Bond between microwave cured repair and concrete substrate

    Get PDF
    The bond strength between a concrete substrate and repair patch is critical to its durability. This paper investigates the effect of microwave curing the freshly applied repair, for 45 min at 132 Watts, on the 28 day bond strength between substrate concrete and different commercial repair materials. The repairs were applied at different ambient temperatures of 20, 10, 2 and −5 °C. Tensile split tests on repaired cube specimens were performed to determine the interfacial bond strength. The ability of microwave curing to prevent the detrimental effects of freezing at early age on the bond and compressive strength of repair patches is investigated. Experimental results show that microwave curing prevents loss of long term (28 day) repair/substrate bond strength of repair materials applied at freezing temperatures (−5 °C), relative to the repairs applied at higher temperatures (2–20 °C), except one lightweight repair formulation. In comparison, the control samples (non-microwave cured) of repairs applied at −5 °C suffered severe loss of bond strength and compressive strength due to early age freezing. In addition, no adverse effects on the bond strength and a small reduction of 6.75% in the 28 day compressive strength are observed in the early age microwave cured repairs applied at ambient temperatures of 2–20 °C. The repair/substrate bond strength is independent of the compressive strength of the repair material at all temperatures of repair application. Microwave curing can accelerate the concrete repair process and facilitate construction activity in cold weather

    Protection of buried rigid pipes using geogrid-reinforced soil systems subjected to cyclic loading

    Get PDF
    YesThe performance of buried rigid pipes underneath geogrid-reinforced soil while applying incrementally increased cyclic loading was assessed using a fully instrumented laboratory rig. The influence of varying two parameters of practical importance was investigated; the pipe burial depth and the number of geogrid-layers. Measurements were taken for pipe deformation, footing settlement, strain in pipe and reinforcing layers, and pressure/soil stress on the pipe crown during various stages of cyclic loading. The research outcomes demonstrated a rapid increase in the rate of deformation of the pipe and the footing, and the rate of generated strain in the pipe and the geogrid-layers during the first 300 cycles. While applying further cycles, those rates were significantly decreased. Increasing the pipe burial depth and number of geogrid-layers resulted in reductions in the footing and the pipe deformations, the pressure on pipe crown, and the pipe strains. Redistribution of stresses, due to the inclusion of reinforcing layers, formed a confined zone surrounding the pipe providing it with additional lateral support. The pipe invert experienced a rebound, which was found to be dependent on pressure around the pipe and the degree of densification of the bedding layer. Data for strains measured in the geogrid-layers showed that despite the applied loading value and the pipe burial depth, the tensile strain in the lower geogrid-layer was usually higher than that measured in the upper layer
    • …
    corecore