50 research outputs found

    The Cdc37 protein kinase–binding domain is sufficient for protein kinase activity and cell viability

    Get PDF
    Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Δ and hsc82Δ strains. The protein kinase–binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase–signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90

    The Gene-Lifestyle Interaction on Leptin Sensitivity and Lipid Metabolism in Adults: A Population Based Study

    Get PDF
    Background: Obesity has been associated with leptin resistance and this might be caused by genetic factors. The aim of this study was to investigate the gene-lifestyle interaction betwee

    Effect on Baby-Friendly Hospital Steps When Hospitals Implement a Policy to Pay for Infant Formula

    Get PDF
    Background: The Baby-Friendly Hospital Initiative requires hospitals to pay market price for infant formula. No studies have specifically examined the effect of hospitals paying for infant formula on breastfeeding mothers' exposure to Baby-Friendly steps. Objectives: To investigate the effect of hospitals implementing a policy of paying for infant formula on new mothers' exposure to Baby-Friendly steps and examine the effect of exposure to Baby-Friendly steps on breastfeeding rates. Methods: We used a repeated prospective cohort study design. We recruited 2 cohorts of breastfeeding mother-infant pairs (n = 2470) in the immediate postnatal period from 4 Hong Kong public hospitals and followed them by telephone up to 12 months postpartum. We assessed participants' exposure to 6 Baby-Friendly steps by extracting data from the medical record and by maternal self-report. Results: After hospitals began paying for infant formula, new mothers were more likely to experience 4 out of 6 Baby-Friendly steps. Breastfeeding initiation within the first hour increased from 28.7% to 45%, and in-hospital exclusive breastfeeding rates increased from 17.9% to 41.4%. The proportion of mothers who experienced all 6 Baby-Friendly steps increased from 4.8% to 20.5%. The risk of weaning was progressively higher among participants experiencing fewer Baby-Friendly steps. Each additional step experienced by new mothers decreased the risk of breastfeeding cessation by 8% (hazard ratio = 0.92; 95% CI, 0.89-0.95). Conclusion: After implementing a policy of paying for infant formula, breastfeeding mothers were exposed to more Baby-Friendly steps, and exposure to more steps was significantly associated with a lower risk of breastfeeding cessation.postprin

    Effect of a hospital policy of not accepting free infant formula on in-hospital formula supplementation rates and breast-feeding duration

    Get PDF
    OBJECTIVE: To investigate the effect of public hospitals in Hong Kong not accepting free infant formula from manufacturers on in-hospital formula supplementation rates and breast-feeding duration. DESIGN: Prospective cohort study. SETTING: In-patient postnatal units of four public hospitals in Hong Kong. SUBJECTS: Two cohorts of breast-feeding mother-infant pairs (n 2560). Cohort 1 (n 1320) was recruited before implementation of the policy to stop accepting free infant formula and cohort 2 (n 1240) was recruited after policy implementation. Participants were followed prospectively for 12 months or until they stopped breast-feeding. RESULTS: The mean number of formula supplements given to infants in the first 24 h was 2·70 (sd 3·11) in cohort 1 and 1·17 (sd 1·94) in cohort 2 (P<0·001). The proportion of infants who were exclusively breast-fed during the hospital stay increased from 17·7 % in cohort 1 to 41·3 % in cohort 2 (P<0·001) and the risk of breast-feeding cessation was significantly lower in cohort 2 (hazard ratio=0·81; 95 % CI 0·73, 0·90). Participants who non-exclusively breast-fed during the hospital stay had a significantly higher risk of stopping any or exclusive breast-feeding. Higher levels of formula supplementation also increased the risk of breast-feeding cessation in a dose-response pattern. CONCLUSIONS: After implementation of a hospital policy to pay market price for infant formula, rates of in-hospital formula supplementation were reduced and the rates of in-hospital exclusive breast-feeding and breast-feeding duration increased.postprin

    Event logistics in sustainability of football matches

    Get PDF
    The sports event is the most popular and well known event by the people since the past few decades. The most significant sports events will draw billion of the spectators to attend it. However, it is difficult to maintain the sustainability of the events without proper event management which may bring consequences to the economics, society and the environments. The sustainable of events are closely related to the event logistics. The purpose of this study is to explore the relationship between the sustainability of sports matches and event logistics in term of accessibility, information and communication technology (ICT) and waste management. The results obtained from the respondents of the population sample of the football audience by using a quantitative approach through online survey design. The result supported the awareness level of event organisers implicate the sustainability of an event and provide evidence that encapsulated event management and event logistics importance to the public

    A machine learning framework to classify Southeast Asian echolocating bats

    Get PDF
    Bats comprise a quarter of all mammal species, provide key ecosystem services and serve as effective bioindicators. Automated methods for classifying echolocation calls of free-flying bats are useful for monitoring but are not widely used in the tropics. This is particularly problematic in Southeast Asia, which supports more than 388 bat species. Here, sparse reference call databases and significant overlap among species call characteristics makes the development of automated processing methods complex. To address this, we outline a semi-automated framework for classifying bat calls in Southeast Asia and demonstrate how this can reliably speed up manual data processing. We implemented the framework to develop a classifier for the bats of Borneo and tested this at a landscape in Sabah. Borneo has a relatively well-described bat fauna, including reference calls for 52% of all 81 known echolocating species on the island. We applied machine learning to classify calls into one of four call types that serve as indicators of dominant ecological ensembles: frequency-modulated (FM; forest-specialists), constant frequency (CF; forest-specialists and edge/gap foragers), quasi-constant frequency (QCF; edge/gap foragers), and frequency-modulated quasi constant frequency (FMqCF; edge/gap and open-space foragers) calls. Where possible, we further identified calls to species/sonotype. Each classification is provided with a confidence value and a recommended threshold for manual verification. Of the 245,991 calls recorded in our test landscape, 85% were correctly identified to call type and only 10% needed manual verification for three of the call types. The classifier was most successful at classifying CF calls, reducing the volume of calls to be manually verified by over 95% for three common species. The most difficult bats to classify were those with FMqCF calls, with only a 52% reduction in files. Our framework allows users to rapidly filter acoustic files for common species and isolate files of interest, cutting the total volume of data to be processed by 86%. This provides an alternative method where species-specific classifiers are not yet feasible and enables researchers to expand non-invasive monitoring of bat species. Notably, this approach incorporates aerial insectivorous ensembles that are regularly absent from field datasets despite being important components of the bat community, thus improving our capacity to monitor bats remotely in tropical landscapes

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submit- Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; 23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; 26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada; 27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen, 830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea (South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey 08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200 RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku, Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave, Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary; 72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen, Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007 Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. Received July 24, 2019, and in revised form, August 26, 2019 Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677 ER: NISTmAb Glycosylation Interlaboratory Study 12 Molecular & Cellular Proteomics 19.1 Downloaded from https://www.mcponline.org by guest on January 20, 2020 ted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide communityderived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Molecular & Cellular Proteomics 19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L
    corecore