454 research outputs found

    Graphene Oxide alpha Bi2O3 Composites for Visible Light Photocatalysis, Chemical Catalysis and Solar Energy Conversion

    Get PDF
    The growing challenges of environmental purification by solar photocatalysis, precious metal free catalysis and photocurrent generation in photovoltaic cells are receiving the utmost global attention. Here we demonstrate the one pot green chemical synthesis of a new stable heterostructured, eco friendly, multifunctional micro composite consisting of amp; 945; Bi2O3 micro needles intercalated with anchored graphene oxide GO micro sheets 1.0 wt for the above mentioned applications in a large economical scale. The bare amp; 945; Bi2O3 micro needles display twice as better photocatalytic activities than commercial TiO2 Degussa P25 while the GO hybridized composite exhibit 4 6 times enhanced photocatalytic activities than neat TiO2 photocatalyst in the degradation of colored aromatic organic dyes crystal violet and rhodamine 6G under visible light irradiation 300 W tungsten lamp . The highly efficient activity is associated with the strong surface adsorption ability of GO for aromatic dye molecules, the high carrier acceptability and efficient electron hole pair separation in Bi2O3 by individual adjoining GO sheets. Introduction of Ag nanoparticles 2.0 wt further enhances the photocatalytic performance of the composite over 8 folds due to a plasmon induced electron transfer process from Ag nanoparticles via GO sheets into the conduction band of Bi2O3. The new composites are also catalytically active. They catalyze the reduction of 4 nitrophenol to 4 aminophenol in presence of borohydride ions. Photoanodes assembled from GO amp; 945; Bi2O3 and Ag GO amp; 945; Bi2O3 composites display an improved photocurrent response power conversion efficiency 20 higher over those prepared without GO in dye sensitized solar cells DSSCs

    Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle

    Get PDF
    Background Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated. Results Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. Conclusions Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain

    Nanocrystalline and stacking-disordered β-cristobalite AlPO4: the now deciphered main constituent of a municipal sewage sludge ash from a full-scale incineration facility

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on ‘as received’ SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators.Peer Reviewe

    High-pressure reversibility in a plastically flexible coordination polymer crystal

    Get PDF
    Mechanically flexible single crystals are promising materials for advanced technological applications. Here, the authors study the high pressure response of a plastically flexible coordination polymer and provide indication of an overall disparate mechanical response of bulk flexibility and quasi-hydrostatic compression within the same crystal lattice

    Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    Get PDF
    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade

    Waldbodenverdichtung durch schwere Erntemaschinen und natürliches Regenerationspotenzial - untersucht auf der Basis echter Zeitreihen

    Get PDF
    Um unter Weltmarktbedingungen wettbewerbsfähig zu sein, erfolgt seit vielen Jahren eine zunehmende Technisierung in der Forstwirtschaft mittels Einsatz immer leistungsfähigerer, aber auch schwererer Maschinen, besonders in der Holzernte. Zunehmend höhere mechanische Belastungen der Waldböden mit teilweise extremer Überschreitungen der mechanischen Tragfähigkeit sind die Folge. Dies führt zu Bodenschadverdichtungen. Flächenhaft negative, nachhaltig wirksame Effekte auf ökologisch und ökonomisch wichtige Bodenfunktionen wie Wasseraufnahme- und –speicherfähigkeit, Durchwurzelungsfähigkeit, Wuchsleistung der Bäume sind zu erwarten. Das Regenerationspotenzial für derartige Schadverdichtungen von Waldböden wird kontrovers diskutiert. Um die mittel- und langfristigen Auswirkungen des Einsatzes schwerer Holzerntemaschinen und das natürliche Regenerationspotenzial der Waldböden anhand echter Zeitreihen zu untersuchen, wurden drei Dauerbeobachtungsflächen mit Befahrungsversuchen (unbefahrene Kontrolle, 1-fach Befahrung, 5-fach Befahrung) in Rheinland-Pfalz auf unterschiedlichen Ausgangssubstraten und Feuchtebedingungen angelegt, wobei die älteste Fläche bei den aktuellen Untersuchungen schon ein Alter von 28 Jahren erreicht hat. Auf allen Standorten wurden unmittelbar nach der Versuchsanlage erhebliche negative, initiale Auswirkungen auf relevante Bodenfunktionen ermittelt, bis hin zur völligen Bodenzerstörung an einem Standort. Die aktuellen bodenphysikalischen, -chemischen und mikrobiologischen Analysen sowie Wurzeluntersuchungen belegen standorts- und variantenspezifische Unterschiede. Einerseits haben sich an einem Standort die initialen, negativen Effekte nahezu unverändert über einen Zeitraum von mehr als 10 Jahren erhalten, andererseits finden sich aber auch Anzeichen für natürliche Regenerationsprozesse

    Gene Discovery and Molecular Dissection of Lignin Biosynthesis in Perennial Ryegrass (Lolium Perenne)

    Get PDF
    Lignification of plant cell walls has been identified as a major factor limiting forage digestibility. It limits the amount of digestible energy available to livestock, resulting in an incomplete utilisation of cellulose and hemicellulose by ruminant animals. Modification of the lignin profile of ryegrasses (Lolium spp.) and fescues (Festuca spp.) is undertaken through modulating the expression of genes encoding enzymes involved in the biosynthesis of monolignols

    Relationship between optical transparency and nanostructural features of silica aerogels

    Get PDF
    Abstract Silica aerogels are considered to be of great promise for use in transparent thermal insulation systems in solar architecture. The optical transparency of these highly porous materials is influenced by the reaction parameters upon preparation and the precursor used. Previously it was shown that the specific extinction due to bulk scattering decreases both with increasing macroscopic density and increasing pH-value of the sol-gel starting solution. Recently, it was also found that within the measurement accuracy the light scattering intensity of the aerogel bulk equals the extrapolated small-angle X-ray scattering intensity towards scattering angle zero if both types of measurement are performed with respect to an absolute scale. In the meantime, ultra small-angle X-ray scattering measurements have been performed in order to close the gap in momentum space between light and conventional small-angle X-ray scattering. As a result it can be stated that the nearly isotropic (Rayleigh) scattering is caused by the same nanostructural inhomogeneities of the aerogel network which lead to the characteristic small-angle scattering pattern. As a consequence, the amount of isotropically scattered light and thus the optical extinction can be directly related to a quantity called the correlation volume. For a variety of silica aerogels, it is shown how the latter depends on the nanostructural features of the gel network, such as average particle size, interparticle arrangement, pore diameter and an ordering parameter, which accounts for concentration effects
    corecore