34 research outputs found

    Design for invention: annotation of Functional Geometry Interaction for representing novel working principles

    Get PDF
    In some mechanical engineering devices the novelty or inventive step of a patented design relies heavily upon how geometric features contribute to device functions. Communicating the functional interactions between geometric features in existing patented designs may increase a designer’s awareness of the prior art and thereby avoid conflict with their emerging design. This paper shows how functional representations of geometry interactions can be developed from patent claims to produce novel semantic graphical and text annotations of patent drawings. The approach provides a quick and accurate means for the designer to understand the patent that is well suited to the designer’s natural way of understanding the device. Through several example application cases we show the application of a detailed representation of Functional Geometry Interactions that captures the working principle of familiar mechanical engineering devices described in patents. A computer tool that is being developed to assist the designer to understand prior art is also described

    The relationship of telomere length to baseline corticosterone levels in nestlings of an altricial passerine bird in natural populations

    Get PDF
    Artículo de publicación ISIBackground: Environmental stressors increase the secretion of glucocorticoids that in turn can shorten telomeres via oxidative damage. Modification of telomere length, as a result of adversity faced early in life, can modify an individual's phenotype. Studies in captivity have suggested a relationship between glucocorticoids and telomere length in developing individuals, however less is known about that relationship in natural populations. Methods: In order to evaluate the effect of early environmental stressors on telomere length in natural populations, we compared baseline corticosterone (CORT) levels and telomere length in nestlings of the same age. We collected blood samples for hormone assay and telomere determination from two geographically distinct populations of the Thorn-tailed Rayadito (Aphrastura spinicauda) that differed in brood size; nestlings body mass and primary productivity. Within each population we used path analysis to evaluate the relationship between brood size, body mass, baseline CORT and telomere length. Results: Within each distinct population, path coefficients showed a positive relationship between brood size and baseline CORT and a strong and negative correlation between baseline CORT and telomere length. In general, nestlings that presented higher baseline CORT levels tended to present shorter telomeres. When comparing populations it was the low latitude population that presented higher levels of baseline CORT and shorter telomere length. Conclusions: Taken together our results reveal the importance of the condition experienced early in life in affecting telomere length, and the relevance of integrative studies carried out in natural conditions.FONDECYT Grant 11130245 FONDECYT 1140548 USA National Science Foundation Grant IOS-0750540 ICM-005-002 PFB-23-CONICY

    Urban road traffic noise and annoyance: The effect of a quiet facade

    No full text
    Road traffic noise in urban areas is a major source of annoyance. A quiet facade has been hypothesized to beneficially affect annoyance. However, only a limited number of studies investigated this hypothesis, and further quantification is needed. This study investigates the effect of a relatively quiet facade on the annoyance response. Logistic regression was performed in a large population based study (GLOBE, N similar to 18 000), to study the association between road traffic noise exposure at the most exposed dwelling facade (L(den)) and annoyance in: (1) The subgroup with a relatively quiet facade (large difference in road traffic noise level between most and least exposed fac, ade (Q > 10 dB); (2) the subgroup without a relatively quiet facade (Q 10) < OR(Q<10)) in the subgroup with relatively quiet fac, ade compared to the subgroup without relatively quiet facade. The difference in response between groups seemed to increase with increasing Q and L(den). Results indicate that residents may benefit from a quiet fac, ade to the dwelling. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3621180

    Prediction of Acoustic Fields Using a Lattice-Boltzmann Method and Deep Learning

    No full text
    Using traditional computational fluid dynamics and aeroacoustics methods, the accurate simulation of aeroacoustic sources requires high compute resources to resolve all necessary physical phenomena. In contrast, once trained, artificial neural networks such as deep encoder-decoder convolutional networks allow to predict aeroacoustics at lower cost and, depending on the quality of the employed network, also at high accuracy. The architecture for such a neural network is developed to predict the sound pressure level in a 2D square domain. It is trained by numerical results from up to 20,000 GPU-based lattice-Boltzmann simulations that include randomly distributed rectangular and circular objects, and monopole sources. Types of boundary conditions, the monopole locations, and cell distances for objects and monopoles serve as input to the network. Parameters are studied to tune the predictions and to increase their accuracy. The complexity of the setup is successively increased along three cases and the impact of the number of feature maps, the type of loss function, and the number of training data on the prediction accuracy is investigated. An optimal choice of the parameters leads to network-predicted results that are in good agreement with the simulated findings. This is corroborated by negligible differences of the sound pressure level between the simulated and the network-predicted results along characteristic lines and by small mean errors
    corecore