23 research outputs found

    Pre-microRNA and Mature microRNA in Human Mitochondria

    Get PDF
    Chantier qualité GAInternational audienceBACKGROUND: Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). CONCLUSIONS/SIGNIFICANCE: The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria

    MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)

    Get PDF
    Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function

    Genomic features and computational identification of human microRNAs under long-range developmental regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent functional studies have demonstrated that many microRNAs (miRNAs) are expressed by RNA polymerase II in a specific spatiotemporal manner during the development of organisms and play a key role in cell-lineage decisions and morphogenesis. They are therefore functionally related to a number of key protein coding developmental genes, that form genomic regulatory blocks (GRBs) with arrays of highly conserved non-coding elements (HCNEs) functioning as long-range enhancers that collaboratively regulate the expression of their target genes. Given this functional similarity as well as recent zebrafish transgenesis assays showing that the miR-9 family is indeed regulated by HCNEs with enhancer activity, we hypothesized that this type of miRNA regulation is prevalent. In this paper, we therefore systematically investigate the regulatory landscape around conserved self-transcribed miRNAs (ST miRNAs), with their own known or computationally inferred promoters, by analyzing the hallmarks of GRB target genes. These include not only the density of HCNEs in their vicinity but also the presence of large CpG islands (CGIs) and distinct patterns of histone modification marks associated with developmental genes.</p> <p>Results</p> <p>Our results show that a subset of the conserved ST miRNAs we studied shares properties similar to those of protein-coding GRB target genes: they are located in regions of significantly higher HCNE/enhancer binding density and are more likely to be associated with CGIs. Furthermore, their putative promoters have both activating as well as silencing histone modification marks during development and differentiation. Based on these results we used both an elevated HCNE density in the genomic vicinity as well as the presence of a bivalent promoter to identify 29 putative GRB target miRNAs/miRNA clusters, over two-thirds of which are known to play a role during development and differentiation. Furthermore these predictions include miRNAs of the miR-9 family, which are the only experimentally verified GRB target miRNAs.</p> <p>Conclusions</p> <p>A subset of the conserved miRNA loci we investigated exhibits typical characteristics of GRB target genes, which may partially explain their complex expression profiles during development.</p
    corecore