11 research outputs found

    Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour

    Get PDF
    In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad Autónoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP

    Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins

    No full text
    Abstract Background Among wheat gluten proteins, the α-type gliadins are the major responsible for celiac disease, an autoimmune disorder that affects about 1% of the world population. In fact, these proteins contain several toxic and immunogenic epitopes that trigger the onset of the disease. The α-type gliadins are a multigene family, encoded by genes located at the complex Gli-2 loci. Results Here, three bread wheat deletion lines (Gli-A2, Gli-D2 and Gli-A2/Gli-D2) at the Gli-2 loci were generated by the introgression in the bread wheat cultivar Pegaso of natural mutations, detected in different bread wheat cultivars. The molecular characterization of these lines allowed the isolation of 49 unique expressed genes coding α-type gliadins, that were assigned to each of the three Gli-2 loci. The number and the amount of α-type gliadin transcripts were drastically reduced in the deletion lines. In particular, the line Gli-A2/Gli-D2 contained only 12 active α-type gliadin genes (−75.6% respect to the cv. Pegaso) and a minor level of transcripts (−80% compared to cv. Pegaso). Compensatory pleiotropic effects were observed in the two other classes of gliadins (ω- and γ-gliadins) either at gene expression or protein levels. Although the comparative analysis of the deduced amino acid sequences highlighted the typical structural features of α-type gliadin proteins, substantial differences were displayed among the 49 proteins for the presence of toxic and immunogenic epitopes. Conclusion The deletion line Gli-A2/Gli-D2 did not contain the 33-mer peptide, one of the major epitopes triggering the celiac disease, representing an interesting material to develop less “toxic” wheat varieties

    Investment in defense and cost of predator-induced defense along a resource gradient

    Full text link
    An organism’s investment in different traits to reduce predation is determined by the Fitness benefit of the defense relative to the Fitness costs associated with the allocation of time and resources to the defense. Inherent tradeoffs in time and resource allocation should result in differential investment in defense along a resource gradient, but competing models predict different patterns of investment. There are currently insuffcient empirical data on changes in investment in defensive traits or their costs along resource gradients to differentiate between the competing allocation models. In this study, I exposed tadpoles to caged predators along a resource gradient in order to estimate investment in defense and costs of defense by assessing predator-induced plasticity. Induced defenses included increased tail depth, reduced feeding, and reduced swimming activity; costs associated with these defenses were reduced developmental rate, reduced growth, and reduced survival. At low resource availability, these costs predominately resulted in reduced survival, while at high resource availability the costs yielded a reduced developmental rate. Defensive traits responded strongly to predation risk, but did not respond to resource availability (with the exception of feeding activity), whereas traits construed as costs of defenses showed the opposite pattern. Therefore, defensive traits were highly sensitive to predation risk, while traits construed as costs of defense were highly sensitive to resource allocation tradeoffs. This difference in sensitivity between the two groups of traits may explain why the correlation between the expression of defensive traits and the expression of the associated defense costs was weak. Furthermore, my results indicate that genetic linkages and mechanistic integration of multiple defensive traits and their associated costs may constrain time and resource allocation in ways that are not addressed in existing models
    corecore